Skip to main content
Log in

Exponential Mixing for the 3D Stochastic Navier–Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the Navier–Stokes equations in dimension 3 (NS3D) driven by a noise which is white in time. We establish that if the noise is at the same time sufficiently smooth and non-degenerate in space, then the weak solutions converge exponentially fast to equilibrium.

We use a coupling method. The arguments used in dimension two do not apply since, as is well known, uniqueness is an open problem for NS3D. New ideas are introduced. Note however that many simplifications appear since we work with non degeneratenoises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bricmont J., Kupiainen A. and Lefevere R. (2002). Exponential mixing for the 2D Stochastic Navier–Stokes Dynamics. Commun. Math. Phys. 230(1): 87–132

    Article  ADS  MathSciNet  Google Scholar 

  2. Constantin P. and Foias C. (1988). Navier–Stokes Equations. University of Chicago Press, Chicago, IL

    MATH  Google Scholar 

  3. Da Prato G. and Debussche A. (2003). Ergodicity for the 3D stochastic Navier–Stokes equations. J. Math. Pures Appl. (9) 82(8): 877–947

    MathSciNet  Google Scholar 

  4. Da Prato G. and Zabczyk J. (1992). Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge

    Google Scholar 

  5. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Notes, 229,Cambridge: Cambridge University Press, 1996

  6. Debussche A. and Odasso C. (2005). Ergodicity for the weakly damped stochastic Non-linear Schrödinger equations.. J.Evolution Eqs. 5(3): 317–356

    Article  MathSciNet  Google Scholar 

  7. Debussche A. and Odasso C. (2006). Markov solutions for the 3D stochastic Navier–Stokes equations with state dependent noise. J. Evol. Eq. 6(2): 305–324

    Article  MathSciNet  Google Scholar 

  8. E W, Mattingly J.C. and Sinai Y.G. (2001). Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation. Commun. Math. Phys. 224: 83–106

    Article  ADS  MathSciNet  Google Scholar 

  9. Flandoli F. (1997). Irreducibilty of the 3-D stochastic Navier–Stokes equation. J. Funct. Anal. 149: 160–177

    Article  MathSciNet  Google Scholar 

  10. Flandoli, F.: An introduction to 3D stochastic Fluid Dynamics. CIME Lecture Notes, 2005

  11. Flandoli F. and Gatarek D. (1995). Martingale and stationary solutions for stochastic Navier–Stokes equations. PTRF 102: 367–391

    Article  MathSciNet  Google Scholar 

  12. Flandoli F. and Romito M. (2002). Partial regularity for the stochastic Navier–Stokes equations. Trans. Am. Math. Soc. 354(6): 2207–2241

    Article  MathSciNet  Google Scholar 

  13. Flandoli, F., Romito, M.: Markov selections for the 3D stochastic Navier–Stokes equations. In preparation

  14. Foias C. and Temam R. (1989). Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87(2): 359–369

    Article  MathSciNet  Google Scholar 

  15. Hairer M. (2002). Exponential Mixing Properties of Stochastic PDEs Through Asymptotic Coupling. Prob. Theory Rel. Fields 124(3): 345–380

    Article  MathSciNet  Google Scholar 

  16. Hairer M. and Mattingly J.C. (2004). Ergodic properties of highly degenerate 2D stochastic Navier–Stokes equations. C.R. Math. Acad. Sci. Paris 339(12): 879–882

    MathSciNet  Google Scholar 

  17. Hairer, M., Mattingly, J.: Ergodicity of the 2D Navier–Stokes equations with degenerate forcing. Preprint

  18. Henshaw W.D., Kreiss H.O. and Reyna L.G. (1990). Smallest scale estimate for the Navier–Stokes equations for incompressible fluids. Arch. Rat. Mech. Anal. 112(1): 21–44

    Article  MathSciNet  Google Scholar 

  19. Huber G. and Alstrom P. (1993). Universal Decay of vortex density in two dimensions. Physica A 195: 448–456

    Article  ADS  Google Scholar 

  20. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. Second edition, Graduate Texts in Mathematics. 113, New York: Springer-Verlag, 1991

  21. Kuksin, S.: On exponential convergence to a stationary mesure for nonlinear PDEs. The M. I. Viishik Moscow PDE seminar, Amer. Math. Soc. Trans. (2), 206,Providence, RI Amer. Math. Soc., 2002

  22. Kuksin S. and Shirikyan A. (2000). Stochastic dissipative PDE’s and Gibbs measures, Commun. Math. Phys. 213: 291–330

    Article  ADS  MathSciNet  Google Scholar 

  23. Kuksin S. and Shirikyan A. (2001). Ergodicity for the randomly forced 2D Navier–Stokes equations. Math. Phys. Anal. Geom. 4: 147–195

    Article  MathSciNet  Google Scholar 

  24. Kuksin S. and Shirikyan A. (2001). A coupling approach to randomly forced randomly forced PDE’s I. Commun. Math. Phys. 221: 351–366

    Article  ADS  MathSciNet  Google Scholar 

  25. Kuksin S., Piatnitski A. and Shirikyan A. (2002). A coupling approach to randomly forced randomly forced PDE’s II. Commun. Math. Phys. 230(1): 81–85

    Article  ADS  MathSciNet  Google Scholar 

  26. Kuksin S. and Shirikyan A. (2002). Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. 1: 567–602

    MathSciNet  Google Scholar 

  27. Mattingly J. (2002). Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics. Commun. Math. Phys. 230: 421–462

    Article  ADS  MathSciNet  Google Scholar 

  28. Mattingly, J., Pardoux, E.: Ergodicity of the 2D Navier–Stokes Equations with Degenerate Stochastic Forcing. Preprint 2004

  29. Nualart, D.: Malliavin Calculus and related topic. Probability and its Applications, 93B Newyork: Springer, 1995

  30. Odasso, C.: Ergodicity for the stochastic Complex Ginzburg–Landau equations. to appear in Annales de l’institut Henri-Poincaré, Probabilités et Statistiques.

  31. Odasso, C.: Exponential Mixing for Stochastic PDEs: The Non-Additive Case, preprint available on http://www.bretagne.ens-cachan.fr/math/people/cyril.odasso/ and http://arxiv.org/list/math.AP/0505502, 2005

  32. Shirikyan A. (2004). Exponential mixing for 2D Navier–Stokes equation pertubed by an unbounded noise. J. Math. Fluid Mech. 6(2): 169–193

    Article  ADS  MathSciNet  Google Scholar 

  33. Shirikyan, A.: Analyticity of solutions of randomly perturbed two-dimensional Navier–Stokes equations. Usp. Mat. Nauk 57(4(346)), 151–166 (2002); translation in Russian Math. Surveys 57(4), 785–799 (2002)

    Google Scholar 

  34. Temam R. (1977). Navier–Stokes Equations. Theory and Numerical Analysis. Amsterdam-Newyork-Oxford, North-Holland

    MATH  Google Scholar 

  35. Temam, R.: Navier–Stokes equations and nonlinear functional analysis. CBMS-NSF Regional Conference Series in Applied Mathematics, Philadelphia PA: SIAM , 1995

  36. Temam, R.: Some developments on Navier–Stokes Equations in the second half of the 20th Century. In: Développement des Mathématiques au cours de la seconde moitié du XXème siécl, J.P. Pier, ed., Basel: Birkhauser Verlag, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Odasso.

Additional information

Communicated by G. Gallavotti

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odasso, C. Exponential Mixing for the 3D Stochastic Navier–Stokes Equations. Commun. Math. Phys. 270, 109–139 (2007). https://doi.org/10.1007/s00220-006-0156-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0156-4

Keywords

Navigation