Skip to main content
Log in

Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study an initial boundary value problem for the equations of plane magnetohydrodynamic compressible flows, and prove that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. As a by-product, this paper improves the related results obtained by Frid and Shelukhin for the case when the magnetic effect is neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabannes H. (1970). Theoretical Magnetofluiddynamics. Academic Press, New York-London

    Google Scholar 

  2. Chen G.Q. and Wang D. (2003). Existence and continuous dependence of large solutions for the magnetohydrodynamics equations. Z. angew. Math. Phys. 54: 608–632

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen G.Q. and Wang D. (2002). Global solutions of nonlinear magnetohydrodynamics with large initial data. J. Diff. Eqs. 182: 344–376

    Article  MATH  Google Scholar 

  4. Fan, J., Jiang, S.: Zero shear viscosity limit for the Navier–Stokes equations of compressible isentropic fluids with cylindric symmetry. Rend. Sem. Mat. Univ. Pol. Torino (in press)

  5. Fan, J., Jiang, S., Nakamura, G.: Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data. Preprint, 2005

  6. Fan, J.: Stability of spherically symmetric weak solutions to the Navier–Stokes equations of compressible heat conductive fluids in bounded annular domains. Submitted, 2005

  7. Feireisl E. (2001). On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable. Comment. Math. Univ. Carlolinae 42: 83–98

    MathSciNet  MATH  Google Scholar 

  8. Feireisl E. (2004). Dynamics of Viscous Compressible Fluids. Oxford Univ. Press, Oxford

    MATH  Google Scholar 

  9. Frid H. and Shelukhin V.V. (1999). Boundary layers for the Navier–Stokes equations of compressible fluids. Comm. Math. Phys. 208: 309–330

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Frid H. and Shelukhin V.V. (2000). Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry. SIAM J. Math. Anal. 31: 1144–1156

    Article  MathSciNet  MATH  Google Scholar 

  11. Gajewski H., Gröger K. and Zacharias K. (1974). Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademil Verlag, Berlin

    MATH  Google Scholar 

  12. Hoff D. (1995). Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Diff. Eqns. 120: 215–254

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoff D. and Tsyganov E. (2005). Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics. Z. angew. Math. Phys. 56: 791–804

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang S. and Zhang P. (2001). On spherically symmetric solutions of the compressible isentropic Navier–Stokes equations. Commun. Math. Phys. 215: 559–581

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Jiang S. and Zlotnik A. (2004). Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data. Proc. Royal Soc. Edinburgh 134A: 939–960

    MathSciNet  Google Scholar 

  16. Kazhikhov A.V. and Smagulov Sh.S. (1986). Well-posedness and approximation methods for a model of magnetogasdynamics. Izv. Akad. Nauk Kazakh. SSR Ser. Fiz.-Mat. 5: 17–19

    MathSciNet  Google Scholar 

  17. Kawashima S. and Okada M. (1982). Smooth global solutions for the one-dimensional equations in magnetohydrodynamics. Proc Japan Acad. Ser. A, Math. Sci. 58: 384–387

    Article  MathSciNet  MATH  Google Scholar 

  18. Landau L.D., Lifshitz E.M. and Pitaevskii L.P. (1999). Electrodynamics of Continuous Media, 2nd ed. Butterworth-Heinemann, London

    Google Scholar 

  19. Li, T.-T., Qin, T.: Physics and Partial Differential Equations, 2nd. Volume 1, Beijing: Higher Education Press, 2005 (in Chinese)

  20. Lions P.-L. (1996). Mathematical Topics in Fluid Dynamics. Volume 1, Incompressible Models. Oxford Science Publication, Oxford

    Google Scholar 

  21. Lions P.-L. (1998). Mathematical Topics in Fluid Dynamics. Volume 2, Compressible Models. Oxford Science Publication, Oxford

    Google Scholar 

  22. Liu, T.-P., Zeng, Y.: Long-time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Mem. Amer. Math. Soc. 599, Providence, RI: Amer. Math. Soc. 1997

  23. Moreau R. (1990). Magnetohydrodynamics. Klumer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  24. Polovin R.V. and Demutskii V.P. (1990). Fundamentals of Magnetohydrodynamics. Consultants. Bureau, New York

    Google Scholar 

  25. Rakotoson J.M. (1992). A compactness lemma for quasilinear problem: application to parabolic equations. J. Funct. Anal. 106: 358–374

    Article  MathSciNet  MATH  Google Scholar 

  26. Serre D. (1986). Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible. C. R. Acad. Sci. Paris. 303: 639–642

    MathSciNet  MATH  Google Scholar 

  27. Shelukhin V.V. (1998). The limit of zero shear viscosity for compressible fluids. Arch. Rat. Mech. Appl. 143: 357–374

    Article  MathSciNet  MATH  Google Scholar 

  28. Shelukhin V.V. (1998). A shear flow problem for the compressible Navier-Stokes equations. Int. J. Non-linear Mech. 33: 247–257

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Shelukhin V.V. (2000). Vanishing shear viscosity in a free-boundary problem for the equations of compressible fluids. J. Diff. Eqs. 167: 73–86

    Article  MathSciNet  MATH  Google Scholar 

  30. Simon J. (1987). Compact sets and the space L p(0, T; B). Ann. Mat. Pura Appl. 146: 65–96

    Article  MathSciNet  MATH  Google Scholar 

  31. Smagulov Sh.S., Durmagambetov A.A. and Iskenderova D.A. (1993). The Cauchy problem for the equations of magnetogasdynamics. Diff. Eqs. 29: 278–288

    MathSciNet  Google Scholar 

  32. Ströhmer G. (1990). About compressible viscous fluid flow in a bounded region. Pacific J. Math. 143: 359–375

    MathSciNet  MATH  Google Scholar 

  33. Vol’pert A.I. and Hudjaev S.I. (1972). On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR-Sb. 16: 517–544

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishan Fan.

Additional information

Communicated by P. Constantin

Supported by NSFC (Grant No. 10301014, 10225105) and the National Basic Research Program (Grant No. 2005CB321700) of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, J., Jiang, S. & Nakamura, G. Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations. Commun. Math. Phys. 270, 691–708 (2007). https://doi.org/10.1007/s00220-006-0167-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-006-0167-1

Keywords

Navigation