Skip to main content
Log in

KdV Preserves White Noise

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that white noise is an invariant measure for the Korteweg- deVries equation on \({\mathbb{T}}\) . This is a consequence of recent results of Kappeler and Topalov establishing the well-posedness of the equation on appropriate negative Sobolev spaces, together with a result of Cambronero and McKean that white noise is the image under the Miura transform (Ricatti map) of the (weighted) Gibbs measure for the modified KdV equation, proven to be invariant for that equation by Bourgain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M.J., Ladik J.F. (1976/77). On the solution of a class of nonlinear partial difference equations. Studies in Appl. Math. 57(1): 1–12

    MathSciNet  Google Scholar 

  2. Billingsley, P.: Convergence of Probability Measures Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. New York: John Wiley & Sons, Inc., 1999

  3. Bourgain J. (1994). Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1): 1–26

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Colliander J., Keel M., Staffilani G., Takaoka H., Tao T. (2003). Sharp global well-posedness for KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\) J. Amer. Math. Soc. 16(3): 705–749

    Article  MATH  MathSciNet  Google Scholar 

  5. Cambronero S., McKean H.P. (1999). The ground state eigenvalue of Hill’s equation with white noise potential. Comm. Pure Appl. Math. 52(10): 1277–1294

    Article  MATH  MathSciNet  Google Scholar 

  6. Hida, T.: Brownian motion Applications of Mathematics 11. New York-Berlin: Springer-Verlag, 1980

  7. Kenig C., Ponce G., Vega L. (1996). A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9: 573–603

    Article  MATH  MathSciNet  Google Scholar 

  8. Kappeler, T., Topalov, P.: Well-posedness of KdV on \(H^{-1}({\mathbb{T}})\) . Mathematisches Institut, Georg-August-Universität Göttingen: Seminars 2003/2004, Göttingen: Universitätsdrucke Göttingen, 2004, pp. 151–155

  9. Kappeler T., Möhr C., Topalov P. (2005). Birkhoff coordinates for KdV on phase spaces of distributions. Selecta Math. (N.S.) 11(1): 37–98

    Article  MATH  MathSciNet  Google Scholar 

  10. Kappeler T., Topalov P. (2005). Riccati map on \(L^2_0({\mathbb{T}})\) and its applications. J. Math. Anal. Appl. 309(2): 544–566

    Article  MATH  MathSciNet  Google Scholar 

  11. Kappeler T., Topalov P. (2005). Global well-posedness of mKdV in \(L^2({\mathbb{T}},{\mathbb{R}})\). Comm. Partial Diff. Eqs. 30(1–3): 435–449

    Article  MATH  MathSciNet  Google Scholar 

  12. Spohn, H.: Large Scale Dynamics of Interacting Particles Texts and Monographs in Physics, Berlin-Heidelberg-New York: Springer-Verlag 1991, p. 267

  13. Takaoka H., Tsutsumi Y. (2004). Well-posedness of the Cauchy problem for the modified KdV equation with periodic boundary condition. Int. Math. Res. Not. 56: 3009–3040

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Quastel.

Additional information

Communicated by A. Kupiainen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quastel, J., Valkó, B. KdV Preserves White Noise. Commun. Math. Phys. 277, 707–714 (2008). https://doi.org/10.1007/s00220-007-0372-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0372-6

Keywords

Navigation