Skip to main content
Log in

Topological Strings and (Almost) Modular Forms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The B-model topological string theory on a Calabi-Yau threefold X has a symmetry group Γ, generated by monodromies of the periods of X. This acts on the topological string wave function in a natural way, governed by the quantum mechanics of the phase space H 3(X). We show that, depending on the choice of polarization, the genus g topological string amplitude is either a holomorphic quasi-modular form or an almost holomorphic modular form of weight 0 under Γ. Moreover, at each genus, certain combinations of genus g amplitudes are both modular and holomorphic. We illustrate this for the local Calabi-Yau manifolds giving rise to Seiberg-Witten gauge theories in four dimensions and local IP 2 and IP 1  ×  IP 1. As a byproduct, we also obtain a simple way of relating the topological string amplitudes near different points in the moduli space, which we use to give predictions for Gromov-Witten invariants of the orbifold \({{\mathbb {C}^3} / {\mathbb {Z}_3}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aganagic M., Dijkgraaf R., Klemm A., Mariño M. and Vafa C. (2006). Topological strings and integrable hierarchies. Commun. Math. Phys. 261: 451

    Article  MATH  ADS  Google Scholar 

  2. Aganagic M., Klemm A., Mariño M. and Vafa C. (2004). Matrix model as a mirror of Chern-Simons theory. JHEP 0402: 010

    Article  ADS  Google Scholar 

  3. Aganagic M., Klemm A., Mariño M. and Vafa C. (2005). The topological vertex. Commun. Math. Phys. 254: 425

    Article  MATH  ADS  Google Scholar 

  4. Aganagic M., Mariño M. and Vafa C. (2004). All loop topological string amplitudes from Chern-Simons theory. Commun. Math. Phys. 247: 467

    Article  MATH  ADS  Google Scholar 

  5. Bershadsky M., Cecotti S., Ooguri H. and Vafa C. (1993). Holomorphic anomalies in topological field theories. Nucl. Phys. B 405: 279

    Article  ADS  MathSciNet  Google Scholar 

  6. Bershadsky M., Cecotti S., Ooguri H. and Vafa C. (1994). Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165: 311

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Bryan, J. et al.: Work in progress

  8. Candelas P., DeLa Ossa X.C., Green P.S. and Parkes L. (1991). A Pair Of Calabi-Yau Manifolds As An Exactly Soluble Superconformal Theory. Nucl. Phys. B 359: 21

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Cassels J.W.S. (1991). Lectures on Elliptic Curves, London Mathematical Society Student Texts 24. Cambridge University Press, Cambridge

    Google Scholar 

  10. Chiang T.M., Klemm A., Yau S.T. and Zaslow E. (1999). Local mirror symmetry: Calculations and interpretations. Adv. Theor. Math. Phys. 3: 495

    MATH  MathSciNet  Google Scholar 

  11. Connell, I.: Elliptic curve handbook, Montreal: McGill University, 1996, available at http://www.math.mcgill.ca/connell/public/ECH1/,1996

  12. de Wit, B.: N  =  2 electric-magnetic duality in a chiral background. Nucl. Phys. Proc. Suppl. 49, 191 (1996) ; de Wit, B.: N, = ,2 symplectic reparametrizations in a chiral background. Fortsch. Phys. 44, 529 (1996); de Wit, B., Lopes Cardoso, G., Lust, D., Mohaupt, T., Rey, S.J.: Higher-order gravitational couplings and modular forms in N  =  2, D  =  4 heterotic string compactifications. Nucl. Phys. B 481, 353 (1996)

  13. Dijkgraaf, R.: Mirror symmetry and elliptic curves. In: The moduli space of curves (Texel Island, 1994), Boston MA: Birkhuser Boston, 1995, pp. 149–163

  14. Dijkgraaf R., Gukov S., Neitzke A. and Vafa C. (2005). Topological M-theory as unification of form theories of gravity. Adv. Theor. Math. Phys. 9: 593

    MathSciNet  Google Scholar 

  15. Dijkgraaf, R., Verlinde, E.P., Vonk, M.: On the partition sum of the NS five-brane. http://arXiv.org/list/hepth/0205281, 2002

  16. Douglas, M.R., Moore, G.W.: D-branes, Quivers, and ALE Instantons. http://arXiv.org/list/hepth/9603167, 1996

  17. Farkas H. and Kra I. (2001). Theta Constants, Riemann Surfaces and the Modular Group. Amer. Math. Soc, Providence, RI

    MATH  Google Scholar 

  18. Gerasimov A.A. and Shatashvili S.L. (2004). Towards integrability of topological strings. I: Three-forms on Calabi-Yau manifolds. JHEP 0411: 074

    Article  ADS  MathSciNet  Google Scholar 

  19. Ghitza, A.: An elementary introduction to Siegel modular forms. Talk given at the Number Theory Seminar, University of Illinois at Urbana-Champaign, http://www.math.mcgill.ca/~ghitza/uiuc-siegel1.pdf

  20. Hori, K., Vafa, C.: Mirror symmetry. arXiv:hepth/0002222

  21. Huang, M.X., Klemm, A.: Holomorphic anomaly in gauge theories and matrix models. http://arXiv.org/list/hepth/0605195, 2006

  22. Kachru S., Klemm A., Lerche W., Mayr P. and Vafa C. (1996). Nonperturbative results on the point particle limit of N  =  2 heterotic string compactifications. Nucl. Phys. B 459: 537

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Kaneko, M., Zagier, D.B.: A generalized Jacobi theta function and quasimodular forms. In: The moduli space of curves. Progr. Math. 129, Boston, MA:Birkhauser, 1995, pp. 165–172

  24. Katz S., Klemm A. and Vafa C. (1997). Geometric engineering of quantum field theories. Nucl. Phys. B 497: 173

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Klemm A., Lerche W. and Theisen S. (1996). Nonperturbative effective actions of N  =  2 supersymmetric gauge theories. Int. J. Mod. Phys. A 11: 1929

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Klemm A., Mariño M. and Theisen S. (2003). Gravitational corrections in supersymmetric gauge theory and matrix models. JHEP 0303: 051

    Article  ADS  Google Scholar 

  27. Klemm, A., Zaslow, E.: Local mirror symmetry at higher genus. http://arXiv.org/list/hepth/9906046, 1999

  28. Klingen H. (1990). Introductory lectures on Siegel modular forms. Vol. 20 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge

    Google Scholar 

  29. Mariño, M., Moore, G.W.: The Donaldson-Witten function for gauge groups of rank larger than one. Commun. Math. Phys. 199, 25 (1998); Mariño, M.: The uses of Whitham hierarchies. Prog. Theor. Phys. Suppl. 135, 29 (1999)

    Google Scholar 

  30. Moore G.W. and Witten E. (1998). Integration over the u-plane in Donaldson theory. Adv. Theor. Math. Phys. 1: 298

    MathSciNet  Google Scholar 

  31. Nekrasov N.A. (2004). Seiberg-Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7: 831

    MathSciNet  Google Scholar 

  32. Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. http://arXiv.org/list/hepth/0306238, 2003

  33. Nekrasov N. (2005). Z-theory: Chasing M-F-Theory. Comptes Rendus Physique 6: 261

    Article  MathSciNet  Google Scholar 

  34. Ruan, Y.-B. et al.: Work in progress

  35. Seiberg, N., Witten, E.: Electric - magnetic duality, monopole condensation, and confinement in N  =  2 supersymmetric Yang-Mills theory. Nucl. Phys. B 426, 19 (1994) [Erratum-ibid. B 430, 485 (1994)]

    Google Scholar 

  36. Seiberg N. and Witten E. (1994). Monopoles, duality and chiral symmetry breaking in N  =  2 supersymmetric QCD. Nucl. Phys. B 431: 484

    Article  MATH  ADS  MathSciNet  Google Scholar 

  37. Vafa C. (1989). Quantum Symmetries Of String Vacua. Mod. Phys. Lett. A 4: 1615

    Article  ADS  MathSciNet  Google Scholar 

  38. Vafa C. and Witten E. (1995). On orbifolds with discrete torsion. J. Geom. Phys. 15: 189

    Article  MATH  MathSciNet  Google Scholar 

  39. Verlinde, E.P.: Attractors and the holomorphic anomaly. http://arXiv.org/list/hepth/0412139, 2004

  40. Witten, E.: Quantum background independence in string theory. http://arXiv.org/list/hepth/9306122, 1993

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Aganagic.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aganagic, M., Bouchard, V. & Klemm, A. Topological Strings and (Almost) Modular Forms. Commun. Math. Phys. 277, 771–819 (2008). https://doi.org/10.1007/s00220-007-0383-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-007-0383-3

Keywords

Navigation