Skip to main content
Log in

Families of Quintic Calabi–Yau 3–Folds with Discrete Symmetries

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

At special loci in their moduli spaces, Calabi–Yau manifolds are endowed with discrete symmetries. Over the years, such spaces have been intensely studied and have found a variety of important applications. As string compactifications they are phenomenologically favored, and considerably simplify many important calculations. Mathematically, they provided the framework for the first construction of mirror manifolds, and the resulting rational curve counts. Thus, it is of significant interest to investigate such manifolds further. In this paper, we consider several unexplored loci within familiar families of Calabi–Yau hypersurfaces that have large but unexpected discrete symmetry groups. By deriving, correcting, and generalizing a technique similar to that of Candelas, de la Ossa and Rodriguez–Villegas, we find a calculationally tractable means of finding the Picard–Fuchs equations satisfied by the periods of all 3–forms in these families. To provide a modest point of comparison, we then briefly investigate the relation between the size of the symmetry group along these loci and the number of nonzero Yukawa couplings. We include an introductory exposition of the mathematics involved, intended to be accessible to physicists, in order to make the discussion self–contained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Witten E. (1985). Symmetry Breaking Patterns In Superstring Models. Nucl. Phys. B 258: 75

    Article  ADS  MathSciNet  Google Scholar 

  2. Greene, B.R., Kirklin, K.H., Miron, P.J., Ross, G.G.: A Three Generation Superstring Model. 1. Compactification And Discrete Symmetries. Nucl. Phys. B 278, 667 (1986) low energy theory. Greene, B.R., Kirklin, K.H., Miron, P.J., Ross, G.G.: A Three Generation Superstring Model. 2. Symmetry Breaking And The Nucl. Phys. B 292, 606 (1987)

    Google Scholar 

  3. Braun, V., He, Y.H., Ovrut, B.A., Pantev, T.: A heterotic standard model. Phys. Lett. B 618, 252 (2005) Braun, V., Ovrut, B.A., Pantev, T., Reinbacher, R.: Elliptic Calabi–Yau threefolds with Z(3) x Z(3) Wilson lines. JHEP 0412, 062 (2004)

    Google Scholar 

  4. Candelas P. (1988). Yukawa Couplings Between (2,1) Forms. Nucl. Phys. B 298: 458

    Article  ADS  MathSciNet  Google Scholar 

  5. Greene B.R., Kirklin K.H., Miron P.J. and Ross G.G. (1987). 273 Yukawa Couplings For A Three Generation Superstring Model. Phys. Lett. B 192: 111

    Article  ADS  MathSciNet  Google Scholar 

  6. Giryavets A., Kachru S., Tripathy P.K. and Trivedi S.P. (2004). Flux compactifications on Calabi–Yau threefolds. JHEP 0404: 003

    Article  ADS  MathSciNet  Google Scholar 

  7. Gukov S., Vafa C. and Witten E. (2000). CFT’s from Calabi–Yau four-folds. Nucl. Phys. B 584: 69 [Erratum-ibid. B 608, 477 (2001)]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Giddings S.B., Kachru S. and Polchinski J. (2002). Hierarchies from fluxes in string compactifications. Phys. Rev. D 66: 106006 [arXiv:hep-th/0105097]

    Article  ADS  MathSciNet  Google Scholar 

  9. Candelas, P., de la Ossa, X., Rodriguez-Villegas, F.: Calabi–Yau manifolds over finite fields. I. http://arXiv.org/list/hep-th/0012233,2000

  10. Greene B.R. and Plesser M.R. (1990). Duality In Calabi–Yau Moduli Space. Nucl. Phys. B 338: 15

    Article  ADS  MathSciNet  Google Scholar 

  11. Green, M.B., Schwarz, J.H., Witten, E.: Superstring Theory. Vol. 2: Loop Amplitudes, Anomalies And Phenomenology. Cambridge: Camb. Univ. Press. 1987

  12. Candelas P., DeLa Ossa X.C., Green P.S. and Parkes L. (1991). A Pair Of Calabi–Yau Manifolds As An Exactly Soluble Superconformal Theory. Nucl. Phys. B 359: 21

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Headrick M. and Wiseman T. (2005). Numerical Ricci-flat metrics on K3. Class. Quant. Orav. 22: 4931–4960

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Greene, B.R., Plesser, M.R., Roan, S.S.: In: `Mirror Symmetry I’, New constructions of mirror manifolds: Probing moduli space far from Fermat points, Somerville, MA: International Press, 1998

  15. Szendröi B. (2004). On an example of Aspinwall and Morrison. Proc. Amer. Math. Soc. 132(3): 621–632

    Article  MathSciNet  Google Scholar 

  16. Griffiths P.A. (1969). On the Periods of Certain Rational Integrals. Ann. of Math. (2) 90: 460–495

    Article  Google Scholar 

  17. Griffiths, P.A. (Ed.): Topics in transcendental algebraic geometry Annals of Mathematics Studies, 106. Princeton, NJ: Princeton University Press, 1984

  18. Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry. Providence, RI: Amer. Math. Sec., 1999

  19. Greene, B.R., Plesser, M.R.: Mirror manifolds: A Brief review and progress report. http://arXiv:hep-th/9110014

  20. Dwork B. (1964). On The Zeta function of a hypersurface. II. Ann. of Math. (2) 80: 227–299

    Article  MathSciNet  Google Scholar 

  21. Carlson J., Müller–Stach S. and Peters C. (2003). Period Mappings and Period Domains. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  22. Ohara K. (1997). Computation of the Monodromy of the Generalized Hypergeometric Function. Kyushu J. Math. 51: 101–124

    Article  MathSciNet  MATH  Google Scholar 

  23. Morrison, D.: Mathematical aspects of mirror symmetry Complex. In: Algebraic Geometry, J. Kollár, ed., IAS/Park City Math. Series, Vol. 3, 1997, pp. 265–340

  24. Doran, C.F., Morgan, J.W.: Mirror symmetry and integral variations of Hodge structure underlying one parameter families of Calabi–Yau threefolds. In: Mirror Symmetry v., AMS/IP Vol. 38, Providence, RI: Amer. Math. Sec., 2006

  25. Hosono S., Klemm A., Theisen S. and Yau S.-T. (1995). Mirror symmetry, mirror map and applications to Calabi–Yau hypersurfaces. Commun. Math. Phys. 167: 301–350

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Coates, T., Corti, A., Iritani, H., Tseng, H.: Wall-Crossings in Toric Gromov-Witten Theory I: Crepant Examples. http://arxiv.org/list/math.AG/0611550, 2006

  27. Doran, C.F., Greene, B.R., Judes, S., Whitcher, U.: In preparation

  28. Nikulin V.V. (1979). Finite groups of automorphisms of Kählerian K3 surfaces. (Russian) Trudy Moskov. Mat. Obshch. 38: 75–137

    MathSciNet  MATH  Google Scholar 

  29. Oguiso, K.: Automorphism groups in a family of K3 surfaces. http://arxiv.org/list/0104049, 2001

  30. Dolgachev, I.: Weighted projective varieties. In: Group Actions and Vector Fields, J. B. Carell, ed., Lecture Notes in Math., Vol. 956, Springer–Verlag, Berlin, Heidelberg, New York: 1982, pp. 34–37; J. Steenbrink, Intersection form for quasi–homogeneous singularities. Comp. Math. 34 (1977), 211–223 D. Morrison, Picard–Fuchs equations and mirror maps for hypersurfaces. http://arxiv.org/list/9111025, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Judes.

Additional information

Communicated by N.A. Nekrasov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doran, C., Greene, B. & Judes, S. Families of Quintic Calabi–Yau 3–Folds with Discrete Symmetries. Commun. Math. Phys. 280, 675–725 (2008). https://doi.org/10.1007/s00220-008-0473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0473-x

Keywords

Navigation