Skip to main content
Log in

Continuity of Quantum Channel Capacities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that a broad array of capacities of a quantum channel are continuous. That is, two channels that are close with respect to the diamond norm have correspondingly similar communication capabilities. We first show that the classical capacity, quantum capacity, and private classical capacity are continuous, with the variation on arguments \({\varepsilon}\) apart bounded by a simple function of \({\varepsilon}\) and the channel’s output dimension. Our main tool is an upper bound of the variation of output entropies of many copies of two nearby channels given the same initial state; the bound is linear in the number of copies. Our second proof is concerned with the quantum capacities in the presence of free backward or two-way public classical communication. These capacities are proved continuous on the interior of the set of non-zero capacity channels by considering mutual simulation between similar channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Holevo A.S.: The capacity of the quantum channel with general signal states. IEEE. Trans. Inf. Theory 44(1), 269–273 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Schumacher B., Westmoreland M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56(1), 131–138 (1997)

    Article  ADS  Google Scholar 

  3. Devetak I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51, 44–55 (2005)

    Article  MathSciNet  Google Scholar 

  4. Lloyd S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613–1622 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  5. Shor, P.W.: The quantum channel capacity and coherent information. In: Lecture notes, MSRI Workshop on Quantum Computation, 2002. Available online at http://www.msri.org/publications/ln/msri/2002/quantumcrypto/shor/1/

  6. Bennett C.H., Shor P.W., Smolin J.A., Thapliyal A.V.: Entanglement-assisted capacity of a quantum channel and the reverse shannon theorem. IEEE Trans. Inf. Theory 48, 2637–2655 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bennett C.H., DiVincenzo D.P., Smolin J.A.: Capacities of quantum erasure channels. Phys. Rev. Lett. 78(16), 3217–3220 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Barnum H., Smolin J.A., Terhal B.M.: Quantum capacity is properly defined without encodings. Phys. Rev. A. 58, 3496–3501 (1998)

    Article  ADS  Google Scholar 

  9. Keyl, M., Werner, R.F.: How to correct small quantum errors. In: Cohereat Evalution in Noisy Environments, Lecture Notes in Physics, 611 Berlin-Heidelberg-New York: Springer Verlag, 2002, pp. 263–286

  10. Shirokov M.E.: The holevo capacity of infinite dimensional channels and the additivity problem. Comm. Math. Phys. 262, 137–159 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Fannes M.: A continuity property of the entropy density for spin lattice systems. Comm. Math. Phys. 31, 291–294 (1973)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Nielsen M.A.: Continuity bounds for entanglement. Phys. Rev. A 61, 064301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Donald M., Horodecki M.: Continuity of relative entropy of entanglement. Phys. Lett. A 264, 257–260 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Vidal, G.: On the continuity of asymptotic measures of entanglement. http://arxiv.org/abs/quant-ph/0203107vl, 2002

  15. Alicki R., Fannes M.: Continuity of quantum conditional information. J. Phys. A:Math. Gen. 37, L55–L57 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. Christandl M., Winter A.: “squashed entanglement” - an additive entanglement measure. J. Math. Phys. 45, 829–840 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Paulsen V.I.: Completely Bounded Maps and Dilations. John Wiley & Sons, Inc, New York (1987)

    Google Scholar 

  18. Devetak I., Junge M., King C., Ruskai M.B.: Multiplicativity of completely bounded p-norms implies a new additivity result. Commun. Math. Phys. 266, 37–63 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Holevo, A.S.: Statistical problems in quantum physics. In: G. Maruyama, J.V., Prokhorov, eds, Proceedings of the second Japan-USSR Symposium on Probability Theory, Volume 330 of Lecture Notes in Mathematics, Berlin: Springer-Verlag, 1973, pp. 104–119

  20. Shor, P.W., Smolin, J.A.: Quantum error-correcting codes need not completely reveal the error syndrome. http://arxiv.org/abs/quant-ph/9604006v2, 1996

  21. Smith G., Smolin J.A.: Degenerate quantum codes for Pauli channels. Phys. Rev. Lett. 98, 030501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Smith G., Renes J., Smolin J.A.: Structured codes improve the bennett-brassard-84 quantum key rate. Phys. Rev. Lett. 100, 170502 (2008)

    Article  ADS  Google Scholar 

  23. Hastings, M.B.: A counterexample to additivity of minimum output entropy. http://arxiv.org/abs/0809.3972v3quant-ph, 2008

  24. Bennett C.H., DiVincenzo D.P., Smolin J.A., Wootters W.K.: Mixed state entanglement and quantum error correction. Phys. Rev. A. 54, 3824–3851 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  25. Horodecki, M., Horodecki, P., Horodecki, R.: Unified approach to quantum capacities: towards quantum noisy coding theorem. http://arxiv.org/abs/quant-ph/0003040v1, 2000

  26. Shirokov M.: On channels with finite holevo capacity. Theory of Probability and its Applications 53(4), 732–750 (2008)

    MathSciNet  Google Scholar 

  27. Devetak I., Harrow A., Winter A.: A family of quantum protocols. Phys. Rev. Lett. 92, 187901 (2004)

    Article  MathSciNet  Google Scholar 

  28. Yard J., Devetak I., Hayden P.: Capacity theorems for quantum multiple-access channels: Classical-quantum and quantum-quantum capacity regions. IEEE Trans. Inf. Theory 54, 3091–3113 (2008)

    Article  MathSciNet  Google Scholar 

  29. Yard, J., Hayden, P., Devetak, I.: Quantum broadcast channels. http://arxiv.org/abs/quant-ph/0603098v1, 2006

  30. Dupuis, F., Hayden, P.: A father protocol for quantum broadcast channels. http://arxiv.org./abs/quant-ph/0612155v2, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Smith.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, D., Smith, G. Continuity of Quantum Channel Capacities. Commun. Math. Phys. 292, 201–215 (2009). https://doi.org/10.1007/s00220-009-0833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0833-1

Keywords

Navigation