Skip to main content
Log in

Global Smooth Ion Dynamics in the Euler-Poisson System

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A fundamental two-fluid model for describing dynamics of a plasma is the Euler-Poisson system, in which compressible ion and electron fluids interact with their self-consistent electrostatic force. Global smooth electron dynamics were constructed in Guo (Commun Math Phys 195:249–265, 1998) due to dispersive effect of the electric field. In this paper, we construct global smooth irrotational solutions with small amplitude for ion dynamics in the Euler-Poisson system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G.Q., Jerome, J.W., Wang, D.: Compressible Euler-Maxwell equations. Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998). Transport Theory Statist. Phys. 29(3–5), 311–331, (2000)

  2. Coifman R., Meyer Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28(3, xi), 177–202 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cordier S., Grenier E.: Quasineutral limit of an Euler-Poisson system arising from plasma physics. Comm. Part. Diff. Eqs. 25(5–6), 1099–1113 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Feldman M., Ha S.-Y., Slemrod M.: Self-similar isothermal irrotational motion for the Euler, Euler- Poisson systems and the formation of the plasma sheath. J. Hyp. Diff. Eq. 3(2), 233–246 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Feldman M., Ha S.-Y., Slemrod M.: A geometric level-set formulation of a plasma-sheath interface. Arch. Ratn. Mech. Anal. 178(1), 81–123 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Germain P., Masmoudi N., Shatah J.: Global solutions for 3D quadratic Schrödinger equations. Int. Math. Res. Not. 2009(3), 414–432 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for the gravity water waves equation in dimension 3. Preprint, available at http://arxiv.org/abs/1001.5158v1 [math.AP], 2010

  8. Germain, P., Masmoudi, N., Shatah, J.: Global solutions for 2D quadratic Schrödinger equations. Preprint, available at http://arxiv.org/abs/0906.5343v1 [math.Ap], 2009

  9. Guo Y.: Smooth irrotational Flows in the large to the Euler-Poisson system in R 3+1. Commun. Math. Phys. 195, 249–265 (1998)

    Article  ADS  MATH  Google Scholar 

  10. Guo, Y., Tahvildar-Zadeh, A.S.: Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics. In: Nonlinear partial differential equations (Evanston, IL, 1998), Contemp. Math., 238, Providence, RI: Amer. Math. Soc., 1999, pp. 151–161

  11. Guo Z., Peng L., Wang B.: Decay estimates for a class of wave equations. J. Funct. Anal. 254(6), 1642–1660 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gustafson S., Nakanishi K., Tsai T.P.: Global dispersive solutions for the Gross-Pitaevskii equation in two and three dimensions. Ann. IHP 8(7), 1303–1331 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Gustafson S., Nakanishi K., Tsai T.P.: Scattering theory for the Gross-Pitaevskii equation in three dimensions. Commun. Contemp. Math. 11(4), 657–707 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. John F.: Plane Waves and Spherical Means, Applied to Partial Differential Equations. J. Appl. Math. Mech. 62(7), 285–356 (1982)

    Google Scholar 

  15. Kato T.: The Cauchy problem for quasilinear symmetric systems. Arch. Rat. Mech. Anal. 58, 181–205 (1975)

    Article  MATH  Google Scholar 

  16. Liu H., Tadmor E.: Critical thresholds in 2D restricted Euler-Poisson equations. SIAM J. Appl. Math. 63(6), 1889–1910 (2003) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu H., Tadmor E.: Spectral dynamics of the velocity gradient field in restricted flows. Commun Math. Phys. 228(3), 435–466 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Muscalu C.: Paraproducts with flag singularities. I. A case study. Rev. Mat. Iberoam. 23(2), 705–742 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muscalu C., Pipher J., Tao T., Thiele C.: Multi-parameter paraproducts. Rev. Mat. Iberoam. 22(3), 963–976 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peng Y., Wang S.: Convergence of compressible Euler-Maxwell equations to compressible Euler- Poisson equations. Chin. Ann. Math. Ser. B 28(5), 583–602 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peng Y., Wang Y.-G.: Boundary layers and quasi-neutral limit in steady state Euler-Poisson equations for potential flows. Nonlinearity 17(3), 835–849 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Shatah J.: Normal forms and quadratic nonlinear Klein-Gordon equations. Comm. Pure Appl. Math. 38(5), 685–696 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sideris T.: Formation of singularities in three-dimensional compressible fluids. Commun. Math. Phys. 101, 475–485 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Stein, E.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Volume 43 of Princeton Mathematical Series. Princeton, NJ: Princeton University Press 1993, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III

  25. Tao, T.: Nonlinear dispersive equations, local and global analysis. CBMS. Regional Conference Series in Mathematics, 106. Published for the Conference Board of the Mathematical Science, Washington, DC; Providence, RI: Amer. Math. Soc., 2006

  26. Texier B.: WKB asymptotics for the Euler-Maxwell equations. Asymptot. Anal. 42(3-4), 211–250 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Texier B.: Derivation of the Zakharov equations. Arch. Ration. Mech. Anal. 184(1), 121–183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang D.: Global solution to the equations of viscous gas flows. Proc. Roy. Soc. Edinburgh Sect. A 131(2), 437–449 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang D., Wang Z.: Large BV solutions to the compressible isothermal Euler-Poisson equations with spherical symmetry. Nonlinearity 19(8), 1985–2004 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Guo.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Pausader, B. Global Smooth Ion Dynamics in the Euler-Poisson System. Commun. Math. Phys. 303, 89–125 (2011). https://doi.org/10.1007/s00220-011-1193-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1193-1

Keywords

Navigation