Skip to main content
Log in

On Vorticity Directions near Singularities for the Navier-Stokes Flows with Infinite Energy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a geometric nonblow-up criterion on the direction of the vorticity for the three dimensional Navier-Stokes flow whose initial data is just bounded and may have infinite energy. We prove that under a restriction on behavior in time (type I condition) the solution does not blow up if the vorticity direction is uniformly continuous at the place where the vorticity magnitude is large. This improves the regularity condition for the vorticity direction first introduced by P. Constantin and C. Fefferman (1993) for finite energy weak solution. Our method is based on a simple blow-up argument which says that the situation looks like two-dimensional under continuity of the vorticity direction. We also discuss boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bae, H-O., Jin, B.J.: Well-posedness of the Navier-Stokes equations in the half space with nondecaying initial data. Preprint

  2. Beirão da Veiga. H.: Vorticity and smoothness in viscous flows, Nonlinear problems in mathematical physics and related topics, II. Int. Math. Ser. (N. Y.), 2, New York: Kluwer/Plenum, 2002, pp. 61–67

  3. Beirão da Veiga H.: Vorticity and regularity for flows under the Navier boundary condition. Commun. Pure Appl. Anal. 5, 907–918 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Beirão da Veiga H.: Vorticity and regularity for viscous incompressible flows under the Dirichlet boundary condition, Results and related open problems. J. Math. Fluid Mech. 9, 506–516 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beirao da Veiga H., Berselli L.C.: On the regularizing effect of the vorticity direction in incompressible viscous flows. Differential Integral Equations 15, 345–356 (2002)

    MATH  MathSciNet  Google Scholar 

  6. Caffarelli L., Kohn R.V., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Chae D.: On the regularity conditions for the Navier-Stokes and related equations. Rev. Mat. Iberoam. 23, 371–384 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chae D., Kang K., Lee J.: On the interior regularity of suitable weak solutions to the Navier-Stokes equations. Comm. Part. Diff. Eqs. 32, 1189–1207 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, C.-C., Strain, R. M., Yau, H.-T., Tsai, T.-P.: Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations. Int. Math. Res. Not. IMRN 2008, Art. ID rnn016, 31 pp (2008)

  10. Chen C.-C., Strain R.M., Tsai T.-P., Yau H.-T.: Lower bound on the blow-up rate of the axisymmetric Navier-Stokes equations. II. Comm. Part. Diff. Eqs. 34, 203–232 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin P., Fefferman C.: Direction of vorticity and the problem of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J. 42, 775–789 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Constantin P., Fefferman C., Majda A.J.: Geometric constraints on potentially singular solutions for the 3-D Euler equations. Comm. Part. Diff. Eqs. 21, 559–571 (1996)

    MATH  MathSciNet  Google Scholar 

  13. De Giorgi, E.: Frontiere orientate di misura minima, Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61, Pisa: Editrice Tecnico Scientifica, 1961

  14. Giga Y.: A bound for global solutions of semilinear heat equations. Commun. Math. Phys. 103, 415–421 (1986)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Giga, M.-H., Giga, Y., Saal, J.: Nonlinear partial differential equations-asymptotic behavior of solutions and self-similar solutions. Progress in Nonlinear Differential Equations, 79, Boston: Birkhäuser Verlag, 2010

  16. Giga, Y., Inui, K., Matsui, S.: On the Cauchy problem for the Navier-Stokes equations with nondecaying initial data. In: Advances in Fluid Dynamics, Quad. Mat. 4, Dept. Math., Seconda Univ. Napoli, Caserta, 1999, pp. 27–68

  17. Giga Y., Kohn R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math. 38, 297–319 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  18. Giga, Y., Sawada, O.: On regularizing-decay rate estimates for solutions to the Navier-Stokes initial value problem, Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, Vol. 1, 2, Dordrecht: Kluwer Acad. Publ., 2003, pp. 549–562

  19. Giusti, E.: Minimal surfaces and functions of bounded variation. Monograph in Mathematics, 80, Basel: Birkhauser Verlag, 1984

  20. Grujić Z.: Localization and geometric depletion of vortex-stretching in the 3D NSE. Commun. Math. Phys. 290, 861–870 (2009)

    Article  MATH  ADS  Google Scholar 

  21. Grujić Z., Ruzmaikina A.: Interpolation between algebraic and geometric conditions for smoothness of the vorticity in the 3D NSE. Indiana Univ. Math. J. 53, 1073–1080 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grujić Z., Zhang Qi S.: Space-time localization of a class of geometric criteria for preventing blow-up in the 3D NSE. Commun. Math. Phys. 262, 555–564 (2006)

    Article  MATH  ADS  Google Scholar 

  23. Hamilton R.: The formation of singularities in the Ricci flow. Surv. Diff. Geom. 2, 7–136 (1995)

    MathSciNet  Google Scholar 

  24. Iskauriaza L., Serëgin G.A., Shverak V.: L 3,∞-solutions of Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003)

    Article  MATH  Google Scholar 

  25. Koch G., Nadirashvili N., Seregin G., Sverak V.: Liouville theorems for the Navier-Stokes equations and applications. Acta Math. 203, 83–105 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kuroda S.-T.: Diagonalization modulo norm ideals; spectral method and modulus of continuity. RIMS KôKyûroku 16, 101–126 (2010)

    MathSciNet  Google Scholar 

  27. Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. New York: Gordon and Breach Science Publishers, 1969

  28. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ladyzhenskaya, O.A., Solonnikov, V.A., Uralt’seva, N.N.: Linear and quasilinear equations of parabolic type, Moscow 1967; English translation: Providence, RI: Amer. Math. Soc., 1968

  30. Lin F.-H.: A new proof of the Caffarelli-Kohn-Nirenberg theorem. Comm. Pure Appl. Math. 51, 241–257 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Miura H., Sawada O.: On the regularizing rate estimates of Koch-Tataru’s solution to the Navier-Stokes equations. Asymptotic Anal. 49, 1–15 (2006)

    MATH  MathSciNet  Google Scholar 

  32. Necas J., Ruzicka M., Sverak V.: On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176, 283–294 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ohyama T.: Interior regularity of weak solutions to the Navier-Stokes equation. Proc. Japan Acad. 36, 273–277 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  34. Polácik P., Quittner P., Souplet P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems. II: Parabolic equations. Indiana Univ. Math. J. 56, 879–908 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Seregin G., Sverak V.: On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations. Comm. Part. Diff. Eqs. 34, 171–201 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Serrin J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal. 9, 187–195 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  37. Solonnikov V.A.: On nonstationary Stokes problem and Navier-Stokes problem in a half-space with initial data nondecreasing at infinity, Function theory and applications. J. Math. Sci. 114, 726–1740 (2003)

    Article  MathSciNet  Google Scholar 

  38. Struwe, M.: Geometric evolution problems, Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), IAS/Park City Math. Ser., 2, Providence, RI: Amer. Math. Soc., 1996, pp. 257–339

  39. Zhou Y.: A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity. Monatsh. Math. 144, 251–257 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Miura.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giga, Y., Miura, H. On Vorticity Directions near Singularities for the Navier-Stokes Flows with Infinite Energy. Commun. Math. Phys. 303, 289–300 (2011). https://doi.org/10.1007/s00220-011-1197-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1197-x

Keywords

Navigation