Skip to main content
Log in

Energy Cascades and Flux Locality in Physical Scales of the 3D Navier-Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Rigorous estimates for the total – (kinetic) energy plus pressure – flux in \({\mathbb{R}^3}\) are obtained from the three dimensional Navier-Stokes equations. The bounds are used to establish a condition – involving Taylor length scale and the size of the domain – sufficient for existence of the inertial range and the energy cascade in decaying turbulence (zero driving force, non-increasing global energy). Several manifestations of the locality of the flux under this condition are obtained. All the scales involved are actual physical scales in \({\mathbb{R}^3}\) and no regularity or homogeneity/scaling assumptions are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Cheskidov A., Constantin P., Friedlander S., Shvydkoy R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Constantin P., E W., Titi E.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equations. Communi. Math. Phys. 165(1), 207–209 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Constantin P., Foias C.: Navier-Stokes equations. Chicago Lectures in Mathematics. Chicago, IL: University of Chicago Press, 1988

  5. Eyink G.L.: Locality of turbulent cascades. Phys. D 207(1–2), 91–116 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Eyink G.L., Sreenivasan K.R.: Onsager and the theory of hydrodynamic turbulence. Rev. Mod. Phys. 78(1), 87–135 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Foias C., Manley O., Rosa R., Temam R.: Navier-Stokes equations and turbulence, Volume 83 of Encyclopedia of Mathematics and its Applications. Cambridge: Cambridge University Press (2001)

  8. Foias C., Manley O.P., Rosa R.M.S., Temam R.: Estimates for the energy cascade in three-dimensional turbulent flows. C. R. Acad. Sci. Paris Sér. I Math. 333(5), 499–504 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  9. Frisch U.: Turbulence. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  10. Kolmogorov A.N.: Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16–18 (1941)

    MATH  Google Scholar 

  11. Kolmogorov A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 9–13 (1941)

    Google Scholar 

  12. Kolmogorov A.N.: On generation of isotropic turbulence in an incompressible viscous liquid. Dokl. Akad. Nauk SSSR 31, 538–540 (1941)

    Google Scholar 

  13. Kraichnan R.H.: Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525–535 (1971)

    Article  ADS  MATH  Google Scholar 

  14. Lemarié-Rieusset P.G.: Recent developments in the Navier-Stokes problem, Volume 431 of Chapman & Hall/CRC Research Notes in Mathematics. Boca Raton, FL: Chapman & Hall/CRC, 2002

  15. L’vov V., Falkovich G.: Counterbalanced interaction locality of developed hydrodynamic turbulence. Phys. Rev. A 46(8), 4762–4772 (1992)

    Article  ADS  Google Scholar 

  16. Onsager L.: Statistical hydrodynamics. Nuovo Cimento (9) 6(Supplemento, 2(Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)

    Article  MathSciNet  Google Scholar 

  17. Scheffer V.: Hausdorff measure and the Navier-Stokes equations. Comm. Math. Phys. 55(2), 97–112 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Temam R.: Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Grujić.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dascaliuc, R., Grujić, Z. Energy Cascades and Flux Locality in Physical Scales of the 3D Navier-Stokes Equations. Commun. Math. Phys. 305, 199–220 (2011). https://doi.org/10.1007/s00220-011-1219-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1219-8

Keywords

Navigation