Skip to main content
Log in

On the Self-Similar Solutions of the 3D Euler and the Related Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We generalize and localize the previous results by the author on the study of self-similar singularities for the 3D Euler equations. More specifically we extend the restriction theorem for the representation for the vorticity of the Euler equations in a bounded domain, and localize the results on asymptotically self-similar singularities. We also present progress towards relaxation of the decay condition near infinity for the vorticity of the blow-up profile to exclude self-similar blow-ups. The case of the generalized Navier-Stokes equations having the laplacian with fractional powers is also studied. We apply the similar arguments to the other incompressible flows, e.g. the surface quasi-geostrophic equations and the 2D Boussinesq system both in the inviscid and supercritical viscous cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beale J.T., Kato T., Majda A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171(3), 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chae D.: Nonexistence of self-similar singularities for the 3D incompressible Euler equations. Commun. Math. Phys. 273(1), 203–215 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Chae D.: Nonexistence of asymptotically self-similar singularities in the Euler and the Navier-Stokes equations. Math. Ann. 338(2), 435–449 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae D.: Global regularity for the 2-D Boussinesq equations with partial viscous terms. Adv. in Math. 203(2), 497–513 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chae D.: On the continuation principles for the Euler equations and the quasi-geostrophic equation. J. Diff. Eqns. 227, 640–651 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chae D.: On the regularity conditions for the dissipative quasi-geostrophic equations. SIAM. J. Math. Anal. 37(5), 1649–1656 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin P.: On the Euler equations of incompressible fluids. Bull. Amer. Math. Soc. 44, 603–621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin P.: Geometric Statistics in Turbulence. SIAM Rev. 36, 73–98 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin P., Fefferman C., Majda A.: Geometric constraints on potential singularity formulation in the 3-D Euler equations. Comm. P.D.E 21(3-4), 559–571 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity 7, 1459–1533 (1994)

    MathSciNet  Google Scholar 

  12. Constantin P., Wu J.: Hölder continuity of solutions of supercritical dissipative hydrodynamice transport equations. Ann. Inst. Henri Poincaré, Analyse Non Linéaire 26, 159–180 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Constantin P., Wu J.: Regularity of Hölder continuous solutions of the supercritical quasigeostrophic equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25, 1103–1110 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Constantin P., Wu J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Córdoba D.: Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation. Ann. Math. 148(2), 1135–1152 (1998)

    Article  MATH  Google Scholar 

  16. Córdoba A., Córdoba D.: A maximum principle applied to quasi-geostrophic equations. Commun. Math. Phys. 249(3), 511–528 (2004)

    Article  ADS  MATH  Google Scholar 

  17. Córdoba D., Fefferman C.: On the collapse of tubes carried by 3D incompressible flows. Commun. Math. Phys. 222(2), 293–298 (2001)

    Article  ADS  MATH  Google Scholar 

  18. Córdoba D., Fefferman C., De La LLave R.: On squirt singularities in hydrodynamics. SIAM J. Math. Anal. 36(1), 204–213 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Danchin, R., Paicu, M.: Global existence results for the anisotropicBoussinesq system in dimension two, http://arXiv.org/abs/0809.4984v1 [math.Ap], 2008

  20. Deng J., Hou T.Y., Yu X.: Geometric and Nonblowup of 3D Incompressible Euler Flow. Comm. P.D.E 30, 225–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Euler L.: Principes généraux du mouvement des fluides. Mémoires de l’académie des sciences de Berlin 11, 274–315 (1755)

    Google Scholar 

  22. Giga Y., Kohn R.V.: Asymptotically Self-Similar Blow-up of Semilinear Heat Equations. Comm. Pure Appl. Math. 38, 297–319 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hmidi T., Keraani S., Rousset F.: Global well-posedness for Euler-Boussinesq system. Commun. Par. Differ. Equ 36(3), 420–445 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hmidi T., Keraani S., Rousset F.: Global well-posedness for a Boussinesq-Navier-Stokes System with critical dissipation. J. Differ. Equ 249(9), 2147–2174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hou T.Y., Li C.: Global well-posedness of the viscous Boussinesq equations. Disc. Cont. Dyn. Sys. 12(1), 1–12 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2D dissipative quasi- geostrophic equation. Invent. Math. 167(3), 445–453 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Kato T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb {R}^3}\) . J. Func. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  28. Leray J.: Essai sur le mouvement d’un fluide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  29. Majda A., Bertozzi A.: Vorticity and Incompressible Flow. Cambridge Univ. Press, Cambridge (2002)

    MATH  Google Scholar 

  30. Miller J.R., O’Leary M., Schonbek M.: Nonexistence of singular pseudo-self-similar solutions of the Navier-Stokes system. Math. Ann. 319(4), 809–815 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nečas J., Ružička M., Šverák V.: On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math. 176(2), 283–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tsai T-P.: On Leray’s self-similar solutions of the Navier-Stokes equations satisfying local energy estimates. Arch. Rat. Mech. Anal. 143(1), 29–51 (1998)

    Article  MATH  Google Scholar 

  33. Wu J.: The quasi-geostrophic equation and its two regularizations. Comm. P.D.E 27, 1161–1181 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongho Chae.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chae, D. On the Self-Similar Solutions of the 3D Euler and the Related Equations. Commun. Math. Phys. 305, 333–349 (2011). https://doi.org/10.1007/s00220-011-1266-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1266-1

Keywords

Navigation