Skip to main content
Log in

Stochastic Lagrangian Particle Approach to Fractal Navier-Stokes Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this article we study the fractal Navier-Stokes equations by using the stochastic Lagrangian particle path approach in Constantin and Iyer (Comm Pure Appl Math LXI:330–345, 2008). More precisely, a stochastic representation for the fractal Navier-Stokes equations is given in terms of stochastic differential equations driven by Lévy processes. Based on this representation, a self-contained proof for the existence of a local unique solution for the fractal Navier-Stokes equation with initial data in \({{\mathbb W}^{1,p}}\) is provided, and in the case of two dimensions or large viscosity, the existence of global solutions is also obtained. In order to obtain the global existence in any dimensions for large viscosity, the gradient estimates for Lévy processes with time dependent and discontinuous drifts are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L., Lecumberry M., Maniglia S.: Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow. Rend. Sem. Univ. Padova 114, 29–50 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Applebaum, D.: Lévy processes and stochastic calculus. Cambridge Studies in Advance Mathematics 93, Cambridge: Cambridge University Press, 2004

  3. Arnold V.I.: Ordinary differential equations. Spinger-Verlag, Berlin (1992)

    Google Scholar 

  4. Biler P., Funaki T., Woyczynski W.A.: Fractal Burgers equations. J. Diff. Eq. 148, 9–46 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Busnello B.: A probabilistic approach to the two-dimensional Navier-Stokes equations. Ann. Probab. 27(4), 1750–1780 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Busnello B., Flandoli F., Romito M.: A probabilistic representation for the vorticity of a three-dimensional viscous fluid and for general systems of parabolic equations. Proc. Edinb. Math. Soc. (2) 48(2), 295–336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin P., Iyer G.: A stochsatic Lagrangian representation of the three-dimensional incompressible Navier-Stokes equations. Comm. Pure Appl. Math. LXI, 330–345 (2008)

    Article  MathSciNet  Google Scholar 

  8. Crippa G., De Lellis C.: Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 616, 15–46 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cruzeiro A.B., Shamarova E.: Navier-Stokes equations and forward-backward SDEs on the group of diffeomorphisms of a torus. Stoch. Proc. Appl. 119, 4034–4060 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. DiPerna R.J., Lions P.L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98, 511–547 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Esposito R., Marra R., Pulvirenti M., Sciarretta C.: A stochastic Lagrangian picture for the three-dimensional Navier-Stokes equation. Comm. Partial Diff. Eq. 13(12), 1601–1610 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman A.: Stochastic differential equations and applications. Volume 1. Academic Press, New York (1975)

    Google Scholar 

  13. Portenko, N.I.: Generalized diffusion processes. Moscow: Nauka, 1982 In Russian; English translation: Provdence, RI: Amer. Math. Soc., 1990

  14. Priola, E.: Pathwise uniqueness for singular SDEs driven by stable processes. http://arxiv.org/abs/1005.4237v2 [math.DS], 2010

  15. Iyer G.: A stochastic Lagrangian proof of global existence of Navier-Stokes equations for flows with small Reynolds Number. Ann. Inst. H. Poincare Anal. Non Lineaire 26(1), 181–189 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Iyer G., Mattingly J.: A stochastic-Lagrangian particle system for the Navier-Stokes equations. Nolinearity 21, 2537–2553 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Jacob, N.: Pseudo differential operators, Markov processes. Vol. I, Fourier Analysis and Semigroups. Singapore: Imperical College Press, World Scientific Publishing, 2001

  18. Kiselev A., Nazarov F., Schterenberg R.: Blow up and regularity for fractal Burgers equation. Dyn. PDE 5(3), 211–240 (2008)

    MATH  Google Scholar 

  19. Kurenok V.P.: A note on L 2-estimates for stable integrals with drift. Trans. Amer. Math. Soc. 360, 925–938 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Le Jan Y., Sznitman A.S.: Stochastic cascades and 3-dimensional Navier-Stokes equations. Proab. Th. Rela. Fields 109(3), 343–366 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Majda A.J., Bertozzi A.L.: Vorticity and incompressible flow. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  22. Ren J., Zhang X.: Limit theorems for stochastic differential equations with discontinuous coefficients. SIAM J. Math. Anal. 43(1), 302–321 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Resnick, S.: Dynamical problems in nonlinear advective partial differential equations. Ph. D. Thesis, University of Chicago, 1995

  24. Schilling, R., Sztonyk, P., Wang, J.: Coupling property and gradient estimates of Lévy processes via the symbol. http://arxiv.org/abs/1011.1067v1 [math.PR], 2010

  25. Shlesinger, M.F., Zaslavsky, G.M., Frisch U., (eds.): Lévy filghts and related topics in physics. Lect. Notes in Physics, Vol. 450, Berlin: Springer-Verlag, 1995

  26. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton University Press, 1970

  27. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Amsterdam: North-Holland Publishing Company, 1978

  28. Woyczyński, W.A.: Lévy processes in the physical sciences. Boston, MA: Birkhäuser, 2001, pp. 241–266

  29. Wu J.: Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces. Commun. Math. Phys. 263, 803–831 (2005)

    Article  ADS  Google Scholar 

  30. Zhang X.: L p-theory of semi-linear SPDEs on general measure spaces and applications. J. Func. Anal. 239/1, 44–75 (2006)

    Article  Google Scholar 

  31. Zhang X.: A stochastic representation for backward incompressible Navier-Stokes equations. Prob. Theory and Rel. Fields 148(1-2), 305–332 (2010)

    Article  MATH  Google Scholar 

  32. Zhang, X.: Stochastic differential equations with Sobolev drifts and driven by Lévy processes. Ann. Inst. H. Poincare (B) Probabilités Statistiques (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xicheng Zhang.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X. Stochastic Lagrangian Particle Approach to Fractal Navier-Stokes Equations. Commun. Math. Phys. 311, 133–155 (2012). https://doi.org/10.1007/s00220-012-1414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1414-2

Keywords

Navigation