Skip to main content
Log in

A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we prove an approximate controllability result for the bilinear Schrödinger equation. This result requires less restrictive non-resonance hypotheses on the spectrum of the uncontrolled Schrödinger operator than those present in the literature. The control operator is not required to be bounded and we are able to extend the controllability result to the density matrices. The proof is based on fine controllability properties of the finite dimensional Galerkin approximations and allows to get estimates for the L 1 norm of the control. The general controllability result is applied to the problem of controlling the rotation of a bipolar rigid molecule confined on a plane by means of two orthogonal external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev A., Chambrion T.: An estimation of the controllability time for single-input systems on compact Lie groups. ESAIM Control Optim. Calc. Var. 12(3), 409–441 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrachev, A.A., Sachkov, Y.L.: Control theory from the geometric viewpoint. In: Control Theory and Optimization, II, Volume 87 of Encyclopaedia of Mathematical Sciences. Berlin, Springer-Verlag, 2004

  3. Ball J.M., Marsden J.E., Slemrod M.: Controllability for distributed bilinear systems. SIAM J. Control Optim. 20(4), 575–597 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beauchard K.: Local controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84(7), 851–956 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Beauchard K., Coron J.-M.: Controllability of a quantum particle in a moving potential well. J. Funct. Anal. 232(2), 328–389 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beauchard K., Laurent C.: Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control. J. Math. Pures Appl. 94(5), 520–554 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Beauchard K., Mirrahimi M.: Practical stabilization of a quantum particle in a one-dimensional infinite square potential well. SIAM J. Control Optim. 48(2), 1179–1205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beauchard K., Nersesyan V.: Semi-global weak stabilization of bilinear Schrödinger equations. C. R. Math. Acad. Sci. Paris 348(19-20), 1073–1078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bloch A.M., Brockett R.W., Rangan C.: Finite controllability of infinite-dimensional quantum systems. IEEE Trans. Automat. Control 55(8), 1797–1805 (2010)

    Article  MathSciNet  Google Scholar 

  10. Chambrion, T.: Simultaneous approximate tracking of density matrices for a system of Schroedinger equations. http://arXiv.org/abs/0902.3798v1 [math.OC], 2009

  11. Chambrion T., Mason P., Sigalotti M., Boscain U.: Controllability of the discrete-spectrum Schrödinger equation driven by an external field. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 329–349 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Chambrion T., Munnier A.: On the locomotion and control of a self-propelled shape-changing body in a fluid. J. Nonlin. Sci. 21(3), 325–385 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. D’Alessandro D.: Introduction to quantum control and dynamics Applied Mathematics and Nonlinear Science Series. Boca Raton, FL, Chapman, Hall/CRC (2008)

    Google Scholar 

  14. Ervedoza S., Puel J.-P.: Approximate controllability for a system of Schrödinger equations modeling a single trapped ion. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(6), 2111–2136 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Ito K., Kunisch K.: Optimal bilinear control of an abstract Schrödinger equation. SIAM J. Control Optim. 46(1), 274–287 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jakubczyk, B.: Introduction to geometric nonlinear control; controllability and Lie bracket. In: Mathematical control theory, Part 1, 2 (Trieste, 2001), ICTP Lect. Notes, VIII, Trieste: Abdus Salam Int. Cent. Theoret. Phys., 2002, pp. 107–168

  17. Kato, T.: Perturbation theory for linear operators. Die Grundlehren der mathematischen Wissenschaften, Band 132. New York: Springer-Verlag New York, Inc., 1966

  18. Law C.K., Eberly J.H.: Arbitrary control of a quantum electro-magnetic field. Phys. Rev. Lett. 76(7), 1055–1058 (1996)

    Article  ADS  Google Scholar 

  19. Mason P., Sigalotti M.: Generic controllability properties for the bilinear Schrödinger equation. Comm. Part. Diff. Eqs. 35, 685–706 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mirrahimi M.: Lyapunov control of a quantum particle in a decaying potential. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1743–1765 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Nersesyan V.: Growth of Sobolev norms and controllability of the Schrödinger equation. Comm. Math. Phys. 290(1), 371–387 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Nersesyan V.: Global approximate controllability for Schrödinger equation in higher Sobolev norms and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(3), 901–915 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Nersesyan, V., Nersisyan, H.: Global exact controllability in infinite time of Schrödinger equation. Accepted for publication in J. Math. Pures Appl., 2011. doi:10/1016/j.matpur.2011.11.005

  24. Privat Y., Sigalotti M.: Erratum of “The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent”. ESAIM Control Optim. Calc. Var. 16(3), 806–807 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Privat Y., Sigalotti M.: The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent. ESAIM Control Optim. Calc. Var. 16(3), 794–805 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sachkov Y.L.: Controllability of invariant systems on Lie groups and homogeneous spaces. J. Math. Sci. (New York) 100(4), 2355–2427 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Seideman T., Hamilton E.: Nonadiabatic alignment by intense pulses: concepts, theory and directions. Adv. At. Mol. Opt. Phys. 52, 289 (2006)

    Article  Google Scholar 

  28. Spanner M., Shapiro E.A., Ivanov M.: Coherent control of rotational wave-packet dynamics via fractional revivals. Phys. Rev. Lett. 92, 093001 (2004)

    Article  ADS  Google Scholar 

  29. Stapelfeldt H., Seideman T.: Aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543 (2003)

    Article  ADS  Google Scholar 

  30. Turinici G.: On the controllability of bilinear quantum systems. In: Defranceschi, M., Le Bris, C. (eds) Mathematical models and methods for ab initio Quantum Chemistry, Volume 74 of Lecture Notes in Chemistry, Springer, Berlin-Heidelberg-NewYork (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Boscain.

Additional information

Communicated by I. M. Sigal

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boscain, U., Caponigro, M., Chambrion, T. et al. A Weak Spectral Condition for the Controllability of the Bilinear Schrödinger Equation with Application to the Control of a Rotating Planar Molecule. Commun. Math. Phys. 311, 423–455 (2012). https://doi.org/10.1007/s00220-012-1441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1441-z

Keywords

Navigation