Skip to main content
Log in

On the Vanishing Viscosity Limit of 3D Navier-Stokes Equations under Slip Boundary Conditions in General Domains

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the vanishing-viscosity limit for the Navier-Stokes equations with certain slip-without-friction boundary conditions in a bounded domain with non-flat boundary. In particular, we are able to show convergence in strong norms for a solution starting with initial data belonging to the special subclass of data with vanishing vorticity on the boundary. The proof is obtained by smoothing the initial data and by a perturbation argument with quite precise estimates for the equations of the vorticity and for that of the curl of the vorticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier J.J.F.: Sobolev spaces. Second ed., Pure and Applied Mathematics (Amsterdam), Vol. 140, Amsterdam: Elsevier/Academic Press, 2003

  2. Asano, K.: Zero-viscosity limit of the incompressible Navier-Stokes equation. II, Mathematical analysis of fluid and plasma dynamics, I (Kyoto, 1986), Kyoto: Sūrikaisekikenkyūsho Kōkyūroku, 1988, no. 656, pp. 105–128

  3. Bardos C.: Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40, 769–790 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beirão da Veiga H.: Existence and asymptotic behavior for strong solutions of the Navier-Stokes equations in the whole space. Indiana Univ. Math. J. 36, 149–166 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beirão da Veiga H.: Kato’s perturbation theory and well-posedness for the Euler equations in bounded domains. Arch. Rat. Mech. Anal. 104, 367–382 (1988)

    Article  MATH  Google Scholar 

  6. Beirão da Veiga H.: A well-posedness theorem for nonhomogeneous inviscid fluids via a perturbation theorem. J. Diff. Eqs. 78, 308–319 (1989)

    Article  MATH  Google Scholar 

  7. Beirão da Veiga H.: Perturbation theorems for linear hyperbolic mixed problems and applications to the compressible Euler equations. Comm. Pure Appl. Math. 46, 221–259 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga H.: Singular limits in compressible fluid dynamics. Arch. Rat. Mech. Anal. 128, 313–327 (1994)

    Article  MATH  Google Scholar 

  9. Beirão da Veiga H.: A review on some contributions to perturbation theory, singular limits and well-posedness. J. Math. Anal. Appl. 352, 271–292 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Beirão da Veiga, H.: On the sharp vanishing-viscosity limit of viscous incompressible fluid flows. In: New Directions in Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., Basel: Birkhäuser, 2010, pp. 113–122

  11. Beirão da Veiga H., Berselli L.C.: Navier-Stokes equations: Green’s matrices, vorticity direction, and regularity up to the boundary. J. Diff. Eq. 246, 597–628 (2009)

    Article  MATH  Google Scholar 

  12. Beirão da Veiga H., Crispo F.: Sharp inviscid limit results under Navier type boundary conditions. An L p theory. J. Math. Fluid Mech. 12, 397–411 (2010)

    Article  MathSciNet  Google Scholar 

  13. Beirão da Veiga, H., Crispo, F.: Concerning the W k,p-inviscid limit for 3-D flows under a slip boundary condition. J. Math. Fluid Mech. (2010), Online First

  14. Beirão da Veiga H., Crispo F.: The 3-d inviscid limit result under slip boundary conditions. a negative answer, J. Math. Fluid Mech. 14(1), 55–59 (2012)

    Article  MathSciNet  Google Scholar 

  15. Beirão da Veiga H., Crispo F.: A missed persistence property for the Euler equations, and its effect on inviscid limits. Nonlinearity 25, 1661–1669 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Beirão da Veiga H., Crispo F., Grisanti C.R.: An approach to slip boundary conditions in the half-space. Applications to inviscid limits and to non-Newtonian fluids. J. Math. Anal. Appl. 377, 216–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bendali A., Domínguez J., Gallic S.: A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three-dimensional domains. J. Math. Anal. Appl. 107, 537–560 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bourguignon J.P., Brezis H.: Remarks on the Euler equation. J. Funct. Anal. 15, 341–363 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Clopeau T., Mikelić A., Robert R.: On the vanishing-viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity 11, 1625–1636 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Constantin P.: Note on loss of regularity for solutions of the 3-D incompressible Euler and related equations. Commun. Math. Phys. 104, 311–326 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Constantin P.: On the Euler equations of incompressible fluids. Bull. Amer. Math. Soc. (N.S.) 44, 603–621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ebin D., Marsden J.E.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 93, 102–63 (1970)

    Article  MathSciNet  Google Scholar 

  23. Golovkin K.K.: Vanishing viscosity in the Cauchy problem for equations of hydrodynamics. Trudy Mat. Inst. Steklov. 92, 31–49 (1966)

    MathSciNet  Google Scholar 

  24. Jäger W., Mikelić A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Diff. Eqs. 170, 96–122 (2001)

    Article  MATH  Google Scholar 

  25. Jäger W., Mikelić A.: Couette flows over a rough boundary and drag reduction. Comm. Math. Phys. 232, 429–455 (2003)

    MathSciNet  ADS  MATH  Google Scholar 

  26. Kato T.: Nonstationary flows of viscous and ideal fluids in \({\mathbf{R}^{3}}\). J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  27. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. In: Spectral theory and differential equations Proc. Sympos., Dundee, 1974, Lecture Notes in Math., Vol. 448 Berlin: Springer, 1975, pp. 25–70

  28. Kato, T.: Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In: Seminar on nonlinear partial differential equations (Berkeley, Calif., 1983), Math. Sci. Res. Inst. Publ., Vol. 2, New York: Springer, 1984, pp. 85–98

  29. Kelliher J.P.: Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38, 210–232 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kelliher J.P.: On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J. 56, 1711–1721 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kozono H., Yanagisawa T.: L r-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains. Indiana Univ. Math. J. 58, 1853–1920 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Leray J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lopes Filho M.C., Nussenzveig Lopes H.J., Planas G.: On the inviscid limit for two-dimensional incompressible flow with Navier friction condition. SIAM J. Math. Anal. 36, 1130–1141 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lunardi, A.: Interpolation theory. Second ed., Lecture Notes. Scuola Normale Superiore di Pisa (New Series), Edizioni della Normale, Pisa, 2009

  35. Majda, A.: Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, Vol. 53, New York: Springer-Verlag, 1984

  36. Masmoudi N.: Remarks about the inviscid limit of the Navier-Stokes system. Commun. Math. Phys. 270, 777–788 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Mazzucato, A.: On the zero viscosity limit in incompressible fluids. Physica Scripta 2008, 0140002, 6pp (2008)

  38. Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution. Commun. Math. Phys. 192, 463–491 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Schwarz, G.: Hodge decomposition—a method for solving boundary value problems. Lecture Notes in Mathematics, Vol. 1607, Berlin: Springer-Verlag, 1995

  40. Swann H.S.G.: The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in R 3. Trans. Amer. Math. Soc. 157, 373–397 (1971)

    MathSciNet  MATH  Google Scholar 

  41. Temam R.: On the Euler equations of incompressible perfect fluids. J. Funct. Anal. 20, 32–43 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  42. Temam R., Wang X.: On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25, 807–828 (1997)

    MathSciNet  MATH  Google Scholar 

  43. von Wahl W.: Estimating \({\nabla u}\) by div u and curl u. Math. Methods Appl. Sci. 15, 123–143 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xiao Y., Xin Z.: On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math. 60, 1027–1055 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Xiao Y., Xin Z., Wu J.: Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition. J. Funct. Anal. 257, 3375–3394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xiao Y., Xin Z.: Remarks on vanishing viscosity limits for the 3D Navier-Stokes equations with a slip boundary condition. Chin. Ann. Math. Ser. B 32, 321–332 (2011)

    Article  MathSciNet  Google Scholar 

  47. Yudovich V.I.: Non stationary flow of an ideal incompressible liquid, Comput. Math. Math. Phys. 3, 1407–1456 (1963) Russian

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Carlo Berselli.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berselli, L.C., Spirito, S. On the Vanishing Viscosity Limit of 3D Navier-Stokes Equations under Slip Boundary Conditions in General Domains. Commun. Math. Phys. 316, 171–198 (2012). https://doi.org/10.1007/s00220-012-1581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1581-1

Keywords

Navigation