Skip to main content
Log in

Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a δ′ Interaction

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We determine and study the ground states of a focusing Schrödinger equation in dimension one with a power nonlinearity |ψ|2μ ψ and a strong inhomogeneity represented by a singular point perturbation, the so-called (attractive) δ′ interaction, located at the origin. The time-dependent problem turns out to be globally well posed in the subcritical regime, and locally well posed in the supercritical and critical regime in the appropriate energy space. The set of the (nonlinear) ground states is completely determined. For any value of the nonlinearity power, it exhibits a symmetry breaking bifurcation structure as a function of the frequency (i.e., the nonlinear eigenvalue) ω. More precisely, there exists a critical value ω* of the nonlinear eigenvalue ω, such that: if ω0 <  ω <  ω*, then there is a single ground state and it is an odd function; if ω >  ω* then there exist two non-symmetric ground states. We prove that before bifurcation (i.e., for ω <  ω*) and for any subcritical power, every ground state is orbitally stable. After bifurcation (ω = ω* + 0), ground states are stable if μ does not exceed a value \({\mu^\star}\) that lies between 2 and 2.5, and become unstable for μ > μ*. Finally, for μ >  2 and \({\omega \gg \omega^*}\), all ground states are unstable. The branch of odd ground states for ω <  ω* can be continued at any ω >  ω*, obtaining a family of orbitally unstable stationary states. Existence of ground states is proved by variational techniques, and the stability properties of stationary states are investigated by means of the Grillakis-Shatah-Strauss framework, where some non-standard techniques have to be used to establish the needed properties of linearization operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adami R., Noja D.: Existence of dynamics for a 1-d NLS equation in dimension one. J. Phys. A 42(49), 495302 (2009)

    Article  MathSciNet  Google Scholar 

  2. Adami, R., Noja, D., Visciglia, N.: Constrained energy minimization and ground states for NLS with point defects (2012, submitted), arXiv:1204.6344

  3. Adami R., Cacciapuoti C., Finco D., Noja D.: On the structure of critical energy levels for the cubic focusing NLS on star graphs. J. Phys A 45, 192001 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  4. Adami R., Cacciapuoti C., Finco D., Noja D.: Stationary states of NLS on star graphs. Europhys. Lett. 100, 10003 (2012)

    Article  Google Scholar 

  5. Akhmediev N.N.: Novel class of nonlinear surface waves: asymmetric modes in a symmetric layered structure. Sov. Phys. JETP 56, 299–303 (1982)

    Google Scholar 

  6. Albeverio S., Brzeźniak Z., Dabrowski L.: Fundamental solutions of the Heat and Schrödinger Equations with point interaction. J. Func. An. 130, 220–254 (1995)

    Article  MATH  Google Scholar 

  7. Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: Solvable Models in Quantum Mechanics. New York: Springer-Verlag, 1988

  8. Avron J.E., Exner P., Last Y.: Periodic Schrödinger operators with large gaps and Wannier-Stark ladders. Phys. Rev. Lett. 72, 896–899 (1994)

    Article  MATH  ADS  Google Scholar 

  9. Brezis H., Lieb E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cazenave T., Lions P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Cao X.D., Malomed A.B.: Soliton defect collisions in the nonlinear Schrödinger equation. Phys. Lett. A 206, 177–182 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Cazenave, T.: Semilinear Schrödinger Equations. Vol. 10, Courant Lecture Notes in Mathematics, Providence, RI: Amer. Math. Soc., 2003

  13. Cheon T., Shigehara T.: Realizing discontinuous wave functions with renormalized short-range potentials. Phys. Lett. A 243, 111–116 (1998)

    Article  ADS  Google Scholar 

  14. Comech A., Pelinovsky D.: Purely nonlinear instability of standing waves with minimal energy. Comm. Pure App. Math. 56, 1565–1607 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Exner, P., Grosse, P.: Some properties of the one-dimensional generalized point interactions (a torso). http://arxiv.org/abs/math-ph/9910029v1, 1999

  16. Exner P., Neidhart H., Zagrebnov V.A.: Potential approximations to δ′: an inverse Klauder phenomenon with norm-resolvent convergence. Commun. Math. Phys. 224, 593–612 (2001)

    Article  ADS  Google Scholar 

  17. Fibich G., Wang X.P.: Stability for solitary waves for nonlinear Schrödinger equations with inhomogenous nonlinearities. Physica D 175, 96–108 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. Fukuizumi R., Jeanjean L.: Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential. Dis. Cont. Dyn. Syst. (A) 21, 129–144 (2008)

    MathSciNet  Google Scholar 

  19. Fukuizumi R., Ohta M., Ozawa T.: Nonlinear Schrödinger equation with a point defect. Ann. Inst. H. Poincaré - AN 25, 837–845 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Fukuizumi R., Sacchetti A.: Bifurcation and stability for nonlinear Schrödinger equation with double well potential in the semiclassical limit. J. Stat. Phys. 145(6), 1546–1594 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Goodman R.H., Holmes P.J., Weinstein M.I.: Strong NLS soliton-defect interactions. Physica D 192, 215–248 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry - I. J. Func. An. 74, 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry - II. J. Func. An. 94, 308–348 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hislop, P.D., Sigal, I.M.: Introduction to spectral theory: With applications to Schrödinger operators. New York: Springer, 1996

  25. Haroske, D.D., Triebel, H.: Distributions, Sobolev Spaces, Elliptic Equations. Zürich: European Mathematical Society, 2008

  26. Holmer J., Marzuola J., Zworski M.: Fast soliton scattering by delta impurities. Commun. Math. Phys 274, 187–216 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Jackson R.K., Weinstein M.: Geometric analysis of bifurcation and symmetry breaking in a Gross-Pitaevskii equation. J. Stat. Phys. 116, 881–905 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Kirr E., Kevrekidis P.G., Pelinovsky D.E.: Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. Commun. Math. Phys. 308(3), 795–844 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Le Coz S., Fukuizumi R., Fibich G., Ksherim B., Sivan Y.: Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential. Phys. D 237(8), 1103–1128 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Marangell R., Jones C.K.R.T., Susanto H.: Localized standing waves in inhomogeneous Schrodinger equations. Nonlinearity 23(9), 2059–2080 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Ohta M.: Instability of bound states for abstract nonlinear Schrödinger equations. J. Func. Anal. 261, 90–110 (2011)

    Article  MATH  Google Scholar 

  32. Pelinovsky, D.E., Phan, T.: Normal form for the symmetry-breaking bifurcation in the nonlinear Schrödinger equation. http://arxiv.org/abs/1101.5402 [nlin.PS], 2011

  33. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. San Diego, CA: Academic Press Inc., 1980

  34. Weinstein M.: Modulational stability of ground states of nonlinear Schrödinger equations. SIAM J. Math. Anal. 16, 472–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Weinstein M.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39, 51–68 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Witthaut, D., Mossmann, S., Korsch, H.J.: Bound and resonance states of the nonlinear Schrödinger equation in simple model systems. J. Phys. A 38, 1777–1702 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Adami.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adami, R., Noja, D. Stability and Symmetry-Breaking Bifurcation for the Ground States of a NLS with a δ′ Interaction. Commun. Math. Phys. 318, 247–289 (2013). https://doi.org/10.1007/s00220-012-1597-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1597-6

Keywords

Navigation