Skip to main content
Log in

Global Well-Posedness of an Inviscid Three-Dimensional Pseudo-Hasegawa-Mima Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The three-dimensional inviscid Hasegawa-Mima model is one of the fundamental models that describe plasma turbulence. The model also appears as a simplified reduced Rayleigh-Bénard convection model. The mathematical analysis of the Hasegawa-Mima equation is challenging due to the absence of any smoothing viscous terms, as well as to the presence of an analogue of the vortex stretching terms. In this paper, we introduce and study a model which is inspired by the inviscid Hasegawa-Mima model, which we call a pseudo-Hasegawa-Mima model. The introduced model is easier to investigate analytically than the original inviscid Hasegawa-Mima model, as it has a nicer mathematical structure. The resemblance between this model and the Euler equations of inviscid incompressible fluids inspired us to adapt the techniques and ideas introduced for the two-dimensional and the three-dimensional Euler equations to prove the global existence and uniqueness of solutions for our model. This is in addition to proving and implementing a new technical logarithmic inequality, generalizing the Brezis-Gallouet and the Brezis-Wainger inequalities. Moreover, we prove the continuous dependence on initial data of solutions for the pseudo-Hasegawa-Mima model. These are the first results on existence and uniqueness of solutions for a model that is related to the three-dimensional inviscid Hasegawa-Mima equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akerstedt H.O., Nycander J., Pavlenko V.P.: Three-dimensional stability of drift vortices. Phys. Plasmas 3(1), 160–167 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  2. Brézis H., Gallouet T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4(4), 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brézis H., Wainger S.: A Note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Par. Diff. Eqs. 5(7), 773–789 (1980)

    Article  MATH  Google Scholar 

  4. Cao C., Wu J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226(2), 1803–1822 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin, P., Foias, C.: Navier-Stokes Equations. Chicago Lectures in Mathematics. Chicago, IL: University of Chicago Press, 1988

  6. Danchin R., Paicu M.: Global existence results for the anisotropic Boussinesq system in dimension two. Math. Models Meths. Appl. Sci. 22(3), 421–457 (2011)

    Article  MathSciNet  Google Scholar 

  7. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, Providence, RI: Amer. Math. Soc., 1998

  8. Farhat, A., Hauk, S., Titi, E.S.: Analytical study of the Stommel-Charney model of the gulf stream and its relation to the two-dimensional Hasegawa-Mima equation, Preprint

  9. Foias C., Manley O., Temam R.: Attractors for the Bénard problem: existence and physical bounds on their fractal dimension. Nonlinear Anal. 11(8), 939–967 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao H., Zhu A.: The global strong solutions of Hasegawa-Mima- Charney-Obukhov equation. J. Math. Phys. 46(8), 083517 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  11. Grauer R.: An energy estimate for a perturbed Hasegawa-Mima equation. Nonlinearity 11(3), 659–666 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Guo B., Han Y.: Existence and uniqueness of global solution of the Hasegawa-Mima equation. J. Math. Phys. 45(4), 1639–1647 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Guo, B., Huang, D.: Existence and stability of steady waves for the Hasegawa-Mima Equation. Bound. Value Probl. 2009, Art. ID 509801 (2009)

  14. Hasegawa A., Mima K.: Stationary spectrum of strong turbulence in magnetized nonuniform plasma. Phys. Rev. Lett. 39(4), 206–208 (1977)

    Article  ADS  Google Scholar 

  15. Hasegawa A., Mima K.: Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21(1), 87–92 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Hasegawa A., Mima K.: Nonlinear instability of electromagnetic drift waves. Phys. Fluids 21(1), 81–86 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  17. Hasegawa A., Wakatani M.: Plasma edge turbulence. Phys. Rev. Lett. 50(9), 682–686 (1983)

    Article  ADS  Google Scholar 

  18. Horton W., Meiss J.D.: Solitary drift waves in the presence of magnetic shear. Phys. Fluids 26(4), 990–997 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Hou T.Y., Li C.: Global well-posedness of the viscous Boussinesq equations. Dis. Cont. Dyn. Syst. 12(1), 1–12 (2005)

    MathSciNet  MATH  Google Scholar 

  20. John, F.: Partial Differential Equations. Applied Mathematical Sciences, Vol. 19, New York: Springer-Verlag, 1986

  21. Julien K., Knobloch E., Milliff R., Werne J.: Generalized quasigeostrophy for spatially anisotropic rotationally constrained flows. J. Fluid Mech. 555, 233–274 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Kupferman R., Mangoubi C., Titi E.S.: A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime. Commun. Math. Sci. 6(1), 235–256 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics, Vol. 27, Cambridge: Cambridge University Press, 2002

  24. Marchioro, C., Pulvirenti, M.: Mathematical Theory of Incompressible Nonviscous Fluids, Applied Mathematical Sciences, Vol. 96, New York: Springer-Verlag, 1994

  25. Nicolaenko B., Scheurer B., Temam R.: Some global dynamical properties of the Kuramoto–Sivashinsky equation: Nonlinear stability and attractors. Physica D 16, 155–183 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Paumond L.: Some remarks on a Hasegawa-Mima-Charney-Obukhov equation. Phys. D 195(3-4), 379–390 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pedlosky J.: The equations for geostrophic motion in the ocean. J. Phys. Oceanogr. 14, 448–455 (1984)

    Article  ADS  Google Scholar 

  28. Pedlosky J.: Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987

  29. Sprague M., Julien K., Knobloch E., Werne J.: Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J. Fluid Mech. 551, 141–174 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Sueyoshi M., Iwayama T.: Hamiltonian structure for the Charney-Hasegawa-Mima equation in the asymptotic model regime. Fluid Dynam. Res. 39(4), 346–352 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Tassi E., Chandre C., Morrison P.J.: Hamiltonian derivation of the Charney-Hasegawa-Mima equation. Phys. Plasmas 16, 082301 (2009)

    Article  ADS  Google Scholar 

  32. Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. 2nd edition, Applied Mathematical Sciences, Vol. 68, New York: Springer-Verlag, 1997

  33. Temam R.: Navier-Stokes Equations: Theory and Numerical Analysis. AMS/Chelsea Publishing, Providence, RI: Amer. Math. Soc., 2001, reprint of the 1984 edition

  34. Yudovich, V.I.: Non-stationary flow of an ideal incompressible liquid. Zh. Vych. Mat. 6, 1407–1456 (1963) (English)

  35. Zhang, P.: Global smooth solutions to the 2-D nonhomogeneous Navier-Stokes equations. Int. Math. Res. Not. IMRN 2008, Art. ID rnn 098 (2008)

  36. Zhang R.: The global attractors for the dissipative generalized Hasegawa-Mima equation. Acta Math. Appl. Sin. Engl. Ser. 24(1), 19–28 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang R., Guo B.: Global attractor for the Hasegawa-Mima equation. Appl. Math. Mech. 27(5), 505–511 (2006)

    MathSciNet  ADS  Google Scholar 

  38. Zhang R., Guo B.: Dynamical behavior for the three dimensional generalized Hasegawa-Mima equations. J. Math. Phys. 48(1), 012703 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edriss S. Titi.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, C., Farhat, A. & Titi, E.S. Global Well-Posedness of an Inviscid Three-Dimensional Pseudo-Hasegawa-Mima Model. Commun. Math. Phys. 319, 195–229 (2013). https://doi.org/10.1007/s00220-012-1626-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-012-1626-5

Keywords

Navigation