Skip to main content
Log in

Pair Excitations and the Mean Field Approximation of Interacting Bosons, I

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In our previous work (Grillakis et al. in Commun Math Phys 294:273–301, 2010; Adv Math 228:1788–1815, 2011) we introduced a correction to the mean field approximation of interacting Bosons. This correction describes the evolution of pairs of particles that leave the condensate and subsequently evolve on a background formed by the condensate. In Grillakis et al. (Adv Math 228:1788–1815, 2011) we carried out the analysis assuming that the interactions are independent of the number of particles N. Here we consider the case of stronger interactions. We offer a new transparent derivation for the evolution of pair excitations. Indeed, we obtain a pair of linear equations describing their evolution. Furthermore, we obtain a priori estimates independent of the number of particles and use these to compare the exact with the approximate dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  2. Benedikter, N., de Oliveira, G., Schlein B.: Quantitative Derivation of the Gross-Pitaevskii Equation. Preprint, available at http://arxiv.org/abs/1208.0373v2 [math.ph], 2012

  3. Bogoliubov, N.N.: Lectures on Quantum Statistics: Quasi-Averages. London-New York: Gordon and Breach, 1970

  4. Bourgain J.: Scattering in the energy space and below for 3d NLS. J. d’anal. Math. 75, 267–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Existence globale et diffusion pour l’équation de Schrödinger nonlinéaire répulsive cubique sur \({\mathbb R^3}\) en dessous l’espace d’énergie. J. Eq. Der. Part. Forges-les-Eaux, 3-7 juin 2002 GDR 2434 (CNRS)

  6. Chen, T., Pavlović, N.: Derivation of the cubic NLS and Gross-Pitaevskii hierarchy for manybody dynamics in d = 2, 3 based on spacetime estimates. Preprint, available at http://arxiv.org/abs/1111.6222v3 [math-ph], 2012

  7. Chen X.: Second order corrections to mean field evolution for weakly interacting bosons in the case of 3 body interactions. Arch. Rat. Mech. Anal. 203, 455–497 (2012)

    Article  MATH  Google Scholar 

  8. Chen X.: Collapsing estimates and the rigorous derivation of the 2d cubic nonlinear Schrödinger equation with anisotropic switchable quadratic traps. J. Math. Pures App. 98, 450–478 (2012)

    MATH  Google Scholar 

  9. Chen, X.: On the rigorous derivation of the 3d cubic nonlinear Schrödinger equation with switchable quadratic traps. To appear Arch. Rat. Mech. Aval. doi:10.1007/s00205-013-0645-5, 2013

  10. Davis K.B., Mewes M.-O., Andrews M.R., Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Google Scholar 

  11. Dyson F.J.: Ground-state energy of a hard sphere gas. Phys. Rev. 106, 20–26 (1957)

    Article  ADS  MATH  Google Scholar 

  12. Elgart A., Erdös L., Schlein B., Yau H.-T.: Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Rat. Mech. Anal. 179, 265–283 (2006)

    Article  MATH  Google Scholar 

  13. Erdös L., Yau H.-T.: Derivation of the non-linear Schrödinger equation from a many-body Coulomb system. Adv. Theor. Math. Phys. 5, 1169–1205 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Erdös L., Schlein B., Yau H.-T.: Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate. Comm. Pure Appl. Math. 59, 1659–1741 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erdös L., Schlein B., Yau H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Erdös L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross-Pitaevskii equation. Phys. Rev. Lett. 98, 040404 (2007)

    Article  ADS  Google Scholar 

  17. Erdös L., Schlein B., Yau H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. Math. 172, 291–370 (2010)

    Article  MATH  Google Scholar 

  18. Folland, G.B.: Harmonic analysis in phase space. Ann. Math. Stud. Vol. 122, Princeton, NJ: Princeton Univerity Press, 1989

  19. Ginibre J., Velo G.: The classical field limit of scattering theory for non-relativistic many-boson systems, I and II. Commun. Math. Phys. 66, 37–76 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Ginibre J., Velo G.: The classical field limit of scattering theory for non-relativistic many-boson systems, I and II. Commun. Math. Phys. 68, 45–68 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Ginibre J., Velo G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. 64, 363–401 (1985)

    MathSciNet  MATH  Google Scholar 

  22. Grillakis M., Machedon M., Margetis D.: Second-order corrections to mean field evolution of weakly interacting Bosons. I. Commun. Math. Phys. 294, 273–301 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grillakis M., Machedon M., Margetis D.: Second-order corrections to mean field evolution of weakly interacting Bosons. II. Adv. Math. 228, 1788–1815 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Gross E.P.: Structure of a quantized vortex in boson systems. Nuovo Cim. 20, 454–477 (1961)

    Article  MATH  Google Scholar 

  25. Gross E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)

    Article  ADS  Google Scholar 

  26. Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  27. Klainerman S., Machedon M.: On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Commun. Math. Phys. 279, 169–185 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Kirkpatrick K., Schlein B., Staffilani G.: Derivation of the two dimensional nonlinear Schrödinger equation from manybody quantum dinamics. Amer. J. Math 133, 91–130 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee T.D., Huang K., Yang C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Lee T., Yang C.N.: Low-Temperature Behaviour of a Dilute System of Hard Spheres. I. Equilibrium Properties. Phys. Rev. 112, 1419–1429 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvanson, J.: The mathematics of the Bose gas and its condensation. Basel: Birkhaüser Verlag, 2005

  32. Lin J., Strauss W.: Decay and scattering of solutions of a nonlinear Schrödinger equation. J. Funct. Anal. 30, 245–263 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Margetis D.: Solvable model for pair excitation in trapped Boson gas at zero temperature. J. Phys. A: Math. Theor. 41, 235004 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  34. Margetis D.: Solvable model for pair excitation in trapped Boson gas at zero temperature. Corrigendum. J. Phys. A: Math. Theor. 41, 459801 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  35. Pitaevskii L.P.: Vortex lines in an imperfect Bose gas. Soviet Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  36. Pitaevskii, L. P., Stringari, S.: Bose-Einstein condensation. Oxford: Oxford University Press, 2003

  37. Riesz, F., Nagy, B.: Functional analysis. New York: Frederick Ungar Publishing, 1955

  38. Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(2), 31–61 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Shale D.: Linear symmetries of free Boson fields. Trans. Amer. Math. Soc. 103(1), 149–167 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu T.-T.: Some nonequilibrium properties of a Bose system of hard spheres at extremely low temperatures. J. Math. Phys. 2, 105–123 (1961)

    Article  ADS  MATH  Google Scholar 

  41. Wu T.-T.: Bose-Einstein condensation in an external potential at zero temperature. Gen. Theo. Phys. Rev. A 58, 1465–1474 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Machedon.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grillakis, M., Machedon, M. Pair Excitations and the Mean Field Approximation of Interacting Bosons, I. Commun. Math. Phys. 324, 601–636 (2013). https://doi.org/10.1007/s00220-013-1818-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1818-7

Keywords

Navigation