Skip to main content
Log in

Spectra and Eigenstates of Spin Chain Hamiltonians

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove that translationally invariant Hamiltonians of a chain of n qubits with nearest-neighbour interactions have two seemingly contradictory features. Firstly in the limit \({n \rightarrow \infty}\) we show that any translationally invariant Hamiltonian of a chain of n qubits has an eigenbasis such that almost all eigenstates have maximal entanglement between fixed-size sub-blocks of qubits and the rest of the system; in this sense these eigenstates are like those of completely general Hamiltonians (i.e., Hamiltonians with interactions of all orders between arbitrary groups of qubits). Secondly, in the limit \({n \rightarrow \infty}\) we show that any nearest-neighbour Hamiltonian of a chain of n qubits has a Gaussian density of states; thus as far as the eigenvalues are concerned the system is like a non-interacting one. The comparison applies to chains of qubits with translationally invariant nearest-neighbour interactions, but we show that it is extendible to much more general systems (both in terms of the local dimension and the geometry of interaction). Numerical evidence is also presented that suggests that the translational invariance condition may be dropped in the case of nearest-neighbour chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mattis D.C.: The Theory of Magnetism 1, Statistics and Dynamics. Springer, Berlin (1988)

    Google Scholar 

  2. Sachdev S.: Quantum Phase Transitions, 2nd edn. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  3. Bose S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  4. Osborne T.J., Linden N.: Propagation of quantum information through a spin system. Phys. Rev. A 69, 052315 (2004)

    Article  ADS  Google Scholar 

  5. Vidal G., Latorre J.I., Rico E., Kitaev A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  6. Latorre J.I., Rico E., Vidal G.: Ground state entanglement in quantum spin chains. Quantum Inform. Comput. 4, 48–92 (2004)

    MATH  MathSciNet  Google Scholar 

  7. Jin B.Q., Korepin V.E.: Quantum spin chain, toeplitz determinants and the fisher-hartwig conjecture. J. Stat. Phys. 116, 79–95 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Its A.R., Jin B.Q., Korepin V.E.: Entanglement in the xy spin chain. J. Phys. A Math. Gen. 38, 2975–2990 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Korepin V.E.: Universality of entropy scaling in one dimensional gapless models. Phys. Rev. Lett. 92, 096402 (2004)

    Article  ADS  Google Scholar 

  10. Keating J.P., Mezzadri F.: Random matrix theory and entanglement in quantum spin chains. Commun. Math. Phys. 252, 543–579 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Keating J.P., Mezzadri F.: Entanglement in quantum spin chains, symmetry classes of random matrices, and conformal field theory. Phys. Rev. Lett. 94, 050501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  12. Masanes L.: Area law for the entropy of low-energy states. Phys. Rev. A 80, 052104 (2009)

    Article  ADS  Google Scholar 

  13. Arnesen M.C., Bose S., Vedral V.: Natural thermal and magnetic entanglement in the 1d heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  14. Gunlycke D., Kendon V.M., Vedral V.: Thermal concurrence mixing in a one-dimensional ising model. Phys. Rev. A 64, 042302 (2001)

    Article  ADS  Google Scholar 

  15. Calabrese P., Cardy J.: Entanglement entropy and quantum field theory. J. Stat. Mech. Theory E 2004, 06002 (2004)

    Article  Google Scholar 

  16. Hayden P., Leung D.W., Winter A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95–117 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Linden N., Popescu S., Short A.J., Winter A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Goldstein S., Lebowitz J.L., Mastrodonato C., Tumulka R., Zanghi N.: Approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E 81, 011109 (2010)

    Article  ADS  Google Scholar 

  19. Deutsch J.M.: Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046–2049 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  20. Srednicki M.: Chaos and quantum thermalization. Phys. Rev. E 50, 888–901 (1994)

    Article  ADS  Google Scholar 

  21. Rigol M., Dunjko V., Olshanii M.: Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008)

    Article  ADS  Google Scholar 

  22. Atas, Y.Y., Bogomolny, E.: Spectral density of the quantum ising model in two fields: Gaussian and multi-gaussian approximations. ArXiv e-prints arXiv:1402.6858v1 (2014)

  23. Keating, J.P., Linden, N., Wells, H.J.: Random matrices and quantum spin chains. Markov Processes and Related Fields (accepted) arXiv:1403.1114 (2014)

  24. Hartmann M., Mahler G., Hess O.: Gaussian quantum fluctuations in interacting many particle systems. Lett. Math. Phys. 68, 103–112 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Hartmann M., Mahler G., Hess O.: Spectral densities and partition functions of modular quantum systems as derived from a central limit theorem. J. Stat. Phys. 119, 1139–1151 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Lenstra, H.W.: Vanishing sums of roots of unity. In: Proceedings Bicentennial Congress Wiskundig Genootschap, Math. Centre Tracts 100/101, pp. 249–268. Mathematisch Centrum, Amsterdam (1979)

  27. Billingsley P.: Probability and Measure, 3rd edn. Wiley Interscience, New York (1995)

    MATH  Google Scholar 

  28. Nielsen, M.A.: The fermionic canonical commutation relations and the Jordan–Wigner transform. School of Physical Sciences The University of Queensland (2005)

  29. Bernstein D.S.: Matrix Mathematics, 2nd edn, pp. 388–390. Princeton University Press, Oxfordshire (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Wells.

Additional information

Communicated by M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keating, J.P., Linden, N. & Wells, H.J. Spectra and Eigenstates of Spin Chain Hamiltonians. Commun. Math. Phys. 338, 81–102 (2015). https://doi.org/10.1007/s00220-015-2366-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2366-0

Keywords

Navigation