Skip to main content
Log in

On the Inverse Scattering Method for Integrable PDEs on a Star Graph

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We present a framework to solve the open problem of formulating the inverse scattering method (ISM) for an integrable PDE on a star-graph. The idea is to map the problem on the graph to a matrix initial-boundary value (IBV) problem and then to extend the unified method of Fokas to such a matrix IBV problem. The nonlinear Schrödinger equation is chosen to illustrate the method. The framework unifies all previously known examples which are recovered as particular cases. The case of general Robin conditions at the vertex is discussed: the notion of linearizable initial-boundary conditions is introduced. For such conditions, the method is shown to be as efficient as the ISM on the full-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Noja D.: Nonlinear Schrödinger equation on graphs: recent results and open problems. Philos. Trans. R. Soc. A 372, 20130002 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  2. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  3. Zakharov V.E., Shabat A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62 (1972)

    ADS  MathSciNet  Google Scholar 

  4. Ablowitz M.J., Kaup D.J., Newell A.C., Segur H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249 (1974)

    MATH  MathSciNet  Google Scholar 

  5. Lax P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. 21, 467 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ablowitz M.J., Segur H.: Inverse scattering transform—semi-infinite interval. J. Math. Phys. 16, 1054 (1975)

    Article  ADS  MATH  Google Scholar 

  7. Bibkaev R.F., Tarasov V.O.: Initial-boundary value problem for the nonlinear Schrödinger equation. J. Phys. A24, 2507 (1991)

    ADS  Google Scholar 

  8. Sklyanin E.K.: Boundary conditions for integrable equations. Funct. Anal. Appl. 21, 164 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bowcock P., Corrigan E., Zambon C.: Classically integrable field theories with defects. Int. J. Mod. Phys. A19S2, 82 (2004)

    Article  MathSciNet  Google Scholar 

  10. Corrigan E., Zambon C.: Jump-defects in the nonlinear Schrödinger model and other non-relativistic field theories. Nonlinearity 19, 1447 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Caudrelier, V., Mintchev, M.: Solving the quantum non-linear Schrödinger equation with delta-type impurity, E. Ragoucy. J. Math. Phys. 46, 042703 (2005) (section 2 on classical NLS)

  12. Gomes J.F., Ymai L.H., Zimerman A.H.: The super MKDV and Sinh-Gordon hierarchy: solitons and backlund defects. J. Phys. A39, 7471 (2006)

    ADS  MathSciNet  Google Scholar 

  13. Caudrelier V.: On a systematic approach to defects in classical integrable field theories. Int. J. Geom. Meth. Mod. Phys. 5, 1085 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Avan J., Doikou A.: Liouville integrable defects: the non-linear Schrödinger paradigm. JHEP 01, 040 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Avan J., Doikou A.: The sine-Gordon model with integrable defects revisited. JHEP 11, 008 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Habibullin I., Kundu A.: Quantum and classical integrable sine-Gordon model with defect. Nucl. Phys. B795, 549 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Doikou A., Karaiskos N.: Sigma models in the presence of dynamical point-like defects. Nucl. Phys. B867, 872 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. Aguirre, A.R., Araujo, T.R.: Type-II Bäcklund transformations via Gauge transformations. In: Gomes, J.F., Zimerman, A.H. (eds.) JHEP, vol. 12, p. 56 (2011)

  19. Aguirre A.R.: Type-II defects in the super-Liouville theory. J. Phys. Conf. Ser. 474, 012001 (2013)

    Article  ADS  Google Scholar 

  20. Holmer J., Marzuola J., Zworski M.: Fast soliton scattering by delta impurities. Commun. Math. Phys. 274, 187 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Deift P., Park J.: Long-time asymptotics for solutions of the NLS equation with a delta potential and even initial data. Int. Math. Res. Not. 2011, 5505 (2011)

    MATH  MathSciNet  Google Scholar 

  22. Fokas, A.S.: A unified approach to boundary value problems. CBMS-SIAM (2008)

  23. Kostrykin V., Schrader R.: Kirchoff’s rule for quantum wires. J. Phys. A32, 595 (1999)

    ADS  MathSciNet  Google Scholar 

  24. Faddeev Ludwig D., Takhtajan Leon A.: Hamiltonian Methods in the Theory of Solitons. Springer, Berlin (2007)

    MATH  Google Scholar 

  25. Demontis F.: Matrix Zakharov–Shabat System and Inverse Scattering Transform. Lambert Academic Publishing, Saarbrücken (2012)

    Google Scholar 

  26. Manakov S.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248 (1974)

    ADS  MathSciNet  Google Scholar 

  27. Caudrelier V., Zhang Q.C.: Vector nonlinear Schrödinger equation on the half-line. J. Phys. A45, 105201 (2012)

    ADS  MathSciNet  Google Scholar 

  28. Caudrelier V., Zhang Q.C.: Yang–Baxter and reflection maps from vector solitons with a boundary. Nonlinearity 27, 1081 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Fokas A.S.: Integrable nonlinear evolution equations on the half-line. Commun. Math. Phys. 230, 1 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Fokas A.S.: A generalised Dirichlet to Neumann map for certain nonlinear evolution PDEs. Commun. Pure Appl. Math. LVIII, 639 (2005)

    Article  MathSciNet  Google Scholar 

  31. Lenells, J., Fokas, A.S.: The nonlinear Schrödinger equation with t-periodic data: I. Exact results (preprint). arXiv:1412.0304

  32. Lenells, J., Fokas, A.S.: The nonlinear Schrödinger equation with t-periodic data: II. Perturbative results (preprint). arXiv:1412.0306

  33. Fokas A.S., Lenells J.: The unified method: I non-linearizable problems on the half-line. J. Phys. A 45, 195201 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  34. Tarasov V.O.: The integrable initial-boundary value problem on a semiline: nonlinear Schrödinger and sine-Gordon equations. Inv. probl. 7, 435 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H.: Solvable models in quantum mechanics. American Mathematical Society, Providence (1988)

    Book  MATH  Google Scholar 

  36. Rosales R.R.: Exact solutions of some nonlinear evolution equations. Stud. Appl. Math. 59, 117 (1978)

    ADS  MATH  MathSciNet  Google Scholar 

  37. Mintchev M., Ragoucy E., Sorba P.: Reflection transmission algebras. J. Phys. A36, 10407 (2003)

    ADS  MathSciNet  Google Scholar 

  38. Deift P., Zhou X.: A steepest descent method for oscillatory Riemann–Hilbert problems—asymptotics for the MKdV equation. Ann. Math. 137, 295 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  39. Adami R., Cacciapuoti C., Finco D., Noja D.: Fast solitons on star graphs. Rev. Math. Phys. 23, 409 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Habibullin, I.T.: Bäcklund transformation and integrable boundary-initial value problems. In: Nonlinear World (Kiev, 1989), vol. 1, pp. 130–138. World Science Publishing, River Edge (1990)

  41. Habibullin I.T.: Integrable initial-boundary value problems. Theor. Math. Phys. 86(1), 2836 (1991)

    Google Scholar 

  42. Cascaval, R.C., Hunter, C.T.: Linear and nonlinear Schrödinger equations on simple networks. Libertas Math. 30, 85–98 (2010)

  43. Boutet De Monvel A., Fokas A.S., Shepelski D.: Integrable nonlinear evolution equations on the interval. Commun. Math. Phys. 263, 133 (2006)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Caudrelier.

Additional information

Communicated by P. Deift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caudrelier, V. On the Inverse Scattering Method for Integrable PDEs on a Star Graph. Commun. Math. Phys. 338, 893–917 (2015). https://doi.org/10.1007/s00220-015-2378-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2378-9

Keywords

Navigation