Skip to main content
Log in

On the Aharonov–Bohm Operators with Varying Poles: The Boundary Behavior of Eigenvalues

Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a magnetic Schrödinger operator with magnetic field concentrated at one point (the pole) of a domain and half integer circulation, and we focus on the behavior of Dirichlet eigenvalues as functions of the pole. Although the magnetic field vanishes almost everywhere, it is well known that it affects the operator at the spectral level (the Aharonov–Bohm effect, Phys Rev (2) 115:485–491, 1959). Moreover, the numerical computations performed in (Bonnaillie-Noël et al., Anal PDE 7(6):1365–1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361–1403, 2010) show a rather complex behavior of the eigenvalues as the pole varies in a planar domain. In this paper, in continuation of the analysis started in (Bonnaillie-Noël et al., Anal PDE 7(6):1365–1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361–1403, 2010), we analyze the relation between the variation of the eigenvalue and the nodal structure of the associated eigenfunctions. We deal with planar domains with Dirichlet boundary conditions and we focus on the case when the singular pole approaches the boundary of the domain: then, the operator loses its singular character and the k-th magnetic eigenvalue converges to that of the standard Laplacian. We can predict both the rate of convergence and whether the convergence happens from above or from below, in relation with the number of nodal lines of the k-th eigenfunction of the Laplacian. The proof relies on the variational characterization of eigenvalues, together with a detailed asymptotic analysis of the eigenfunctions, based on an Almgren-type frequency formula for magnetic eigenfunctions and on the blow-up technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abatangelo L., Felli V., Terracini S.: Singularity of eigenfunctions at the junction of shrinking tubes, Part II. J. Differ. Equ. 256(10), 3301–3334 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Adams R.A., Fournier J.J.F.: Sobolev Spaces, Pure and Applied Mathematics (Amsterdam), vol. 140, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  3. Aharonov Y., Bohm D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. (2) 115, 485–491 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Alessandrini G.: Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains. Comment. Math. Helv. 69(1), 142–154 (1994)

    Article  MathSciNet  Google Scholar 

  5. Almgren F.J.: Almgren’s Big Regularity Paper: Q-valued Functions Minimizing Dirichlet’s Integral and the Regularity of Area-minimizing Rectifiable Currents Up to Codimension 2, volume 1. World Scientific, Singapore (2000)

    Google Scholar 

  6. Almgren Jr, F.J.: Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. In: Minimal Submanifolds and Geodesics (Proc. Japan-United States Sem., Tokyo, 1977), pp. 1–6. North-Holland, Amsterdam (1979)

  7. Bonnaillie-Noël V., Helffer B.: Numerical analysis of nodal sets for eigenvalues of Aharonov–Bohm Hamiltonians on the square with application to minimal partitions. Exp. Math. 20(3), 304–322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnaillie-Noël, V., Helffer, B., Hoffmann-Ostenhof, T.: Aharonov–Bohm hamiltonians, isospectrality and minimal partitions. J. Phys. A Math. Theor. 42, 1–20. Art. ID 185203 (2009)

  9. Bonnaillie-Noël V., Helffer B., Vial G.: Numerical simulations for nodal domains and spectral minimal partitions. ESAIM Control Optim. Calc. Var. 16(1), 221–246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonnaillie-Noël, V., Léna, C.: Spectral minimal partitions of a sector. Discrete Contin. Dyn. Syst. Ser. B 19(1), 27–53 (2014)

  11. Bonnaillie-Noël V., Noris B., Nys M., Terracini S.: On the eigenvalues of Aharonov–Bohm operators with varying poles. Anal. PDE 7(6), 1365–1395 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  13. Felli V., Ferrero A., Terracini S.: Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J. Eur. Math. Soc. (JEMS) 13(1), 119–174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felli V., Terracini S.: Singularity of eigenfunctions at the junction of shrinking tubes, Part I. J. Differ. Equ. 255(4), 633–700 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Han, Q., Lin, F.-H.: Nodal sets of solutions of elliptic differential equations. Book available on Han’s homepage (2010)

  16. Hartman P., Wintner A.: On the local behavior of solutions of non-parabolic partial differential equations. Am. J. Math. 75, 449–476 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  17. Helffer B.: On spectral minimal partitions: a survey. Milan J. Math. 78(2), 575–590 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Helffer B., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Owen M.P.: Nodal sets for groundstates of Schrödinger operators with zero magnetic field in non-simply connected domains. Commun. Math. Phys. 202(3), 629–649 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Helffer, B., Hoffmann-Ostenhof, T.: On minimal partitions: new properties and applications to the disk. In: Spectrum and Dynamics, CRM Proc. Lecture Notes, vol. 52, pp. 119–135. American Mathematical Society, Providence (2010)

  20. Helffer B., Hoffmann-Ostenhof T.: On a magnetic characterization of spectral minimal partitions. J. Eur. Math. Soc. (JEMS) 15(6), 2081–2092 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: Nodal domains and spectral minimal partitions. Ann. Inst. Henri Poincare Non Linear Anal. 26(1), 101–138 (2009)

  22. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: Nodal minimal partitions in dimension 3. In: Discrete Contin. Dyn. Syst. vol. 28, pp. 617–635 (2010)

  23. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: On spectral minimal partitions: the case of the sphere. In: Around the Research of Vladimir Maz’ya. III, Int. Math. Ser. (N. Y.), vol. 13, pp. 153–178. Springer, New York (2010)

  24. Kato, T.: Schrödinger operators with singular potentials. In: Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), vol. 13, pp. 135–148 (1973)

  25. Krantz, S.G.: Geometric Function Theory, Explorations in Complex Analysis. Cornerstones. Birkhäuser Boston, Inc., Boston, MA (2006)

  26. Laptev, A., Weidl, T.: Hardy inequalities for magnetic dirichlet forms. In: Mathematical Results in Quantum Mechanics (Prague, 1998), Oper. Theory Adv. Appl., vol. 108, pp. 299–305. Birkhäuser, Basel (1999)

  27. Léna, C.: Eigenvalues variations for Aharonov–Bohm operators. J. Math. Phys. 56, 011502 (2015)

  28. Melgaard M., Ouhabaz E.-M., Rozenblum G.: Negative discrete spectrum of perturbed multivortex Aharonov–Bohm Hamiltonians. Ann. Henri Poincaré 5(5), 979–1012 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  29. Melgaard, M., Ouhabaz, E.-M., Rozenblum, G.: Erratum to “Negative discrete spectrum of perturbed multivortex Aharonov–Bohm hamiltonians”. Ann. Henri Poincaré 5, 979–1012 (2004). In: Annales Henri Poincaré, vol. 6, pp. 397–398. Springer, Berlin (2005)

  30. Noris B., Tavares H., Terracini S., Verzini G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63(3), 267–302 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Noris B., Terracini S.: Nodal sets of magnetic Schrödinger operators of Aharonov–Bohm type and energy minimizing partitions. Indiana Univ. Math. J. 59(4), 1361–1403 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Salsa, S.: Partial Differential Equations in Action. Universitext. Springer, Milan (2008) (from modelling to theory)

  33. Wang Z.-Q., Zhu, M.: Hardy inequalities with boundary terms. Electron. J. Differ. Equ. 43, 1–8 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Terracini.

Additional information

Communicated by R. Seiringer

The authors are partially supported by the project ERC Advanced Grant 2013 n. 339958: “Complex Patterns for Strongly Interacting Dynamical Systems, COMPAT”. M. Nys is a Research Fellow of the Belgian Fonds de la Recherche Scientifique, FNRS. The authors wish to thank Virginie Bonnaillie-Noël for providing all the figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noris, B., Nys, M. & Terracini, S. On the Aharonov–Bohm Operators with Varying Poles: The Boundary Behavior of Eigenvalues. Commun. Math. Phys. 339, 1101–1146 (2015). https://doi.org/10.1007/s00220-015-2423-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2423-8

Keywords

Navigation