Skip to main content
Log in

On Gauging Symmetry of Modular Categories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Topological order of a topological phase of matter in two spacial dimensions is encoded by a unitary modular (tensor) category (UMC). A group symmetry of the topological phase induces a group symmetry of its corresponding UMC. Gauging is a well-known theoretical tool to promote a global symmetry to a local gauge symmetry. We give a mathematical formulation of gauging in terms of higher category formalism. Roughly, given a UMC with a symmetry group G, gauging is a 2-step process: first extend the UMC to a G-crossed braided fusion category and then take the equivariantization of the resulting category. Gauging can tell whether or not two enriched topological phases of matter are different, and also provides a way to construct new UMCs out of old ones. We derive a formula for the \({H^4}\)-obstruction, prove some properties of gauging, and carry out gauging for two concrete examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ardonne E., Slingerland J.: ClebschGordan and 6j-coefficients for rank 2 quantum groups. J. Phys. A Math. Theor. 43.39, 395205 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barkeshli, M., Bonderson, P.H., Cheng, M., Wang, Z.: Symmetry, defects, and gauging of topological phases. arXiv:1410.4540 (2014)

  3. Bonderson, P.H.: Non-Abelian anyons and interferometry, Diss. California Institute of Technology (2007)

  4. Bruillard, P., Ng, R., Rowell, E., Wang, Z.: On classification of modular categories by rank. Int. Math. Res. Not. arXiv:1507.05139 (2015) (to appear)

  5. Burciu S., Natale S.: Fusion rules of equivariantizations of fusion categories. J. Math. Phys. 54(1), 013511 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: Group-theoretical properties of nilpotent modular categories. arXiv:0704.0195 (2007)

  7. Drinfeld V., Gelaki S., Nikshych D., Ostrik V.: On braided fusion categories I. Sel. Math. 16(1), 1–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davydov A., Müger M., Nikshych D., Ostrik V.: The Witt group of non-degenerate braided fusion categories. J. Fúr die Reine und Angewandte Mathematik (Crelles Journal) 2013(677), 135–177 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Etingof P., Nikshych D., Ostrik V.: On fusion categories. Ann. Math. 162, 581–642 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Etingof P., Nikshych D., Ostrik V.: Fusion categories and homotopy theory with an appendix by Ehud Meir. Quantum Topol. 1(3), 209–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Kramers–Wannier duality from conformal defects. Phys. Rev. Lett. 93(7), 070601 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fuchs J., Priel J., Schweigert C., Valentino A.: On the Brauer groups of symmetries of abelian Dijkgraaf–Witten theories. Comm. Math. Phys. 339(2), 385–405 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fuchs J., Schweigert C.: A note on permutation twist defects in topological bilayer phases. Lett. Math. Phys. 104.11, 1385–1405 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fröhlich, J., Fuchs, J., Runkel, I., Schweigert C.: Defect lines, dualities, and generalised orbifolds. arXiv:0909.5013 (arXiv preprint)

  15. Galindo C., Hong S.M., Rowell E.C.: Generalized and quasi-localizations of braid group representations. Int. Math. Res. Not. 2013(3), 693731 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Galindo C.: Clifford theory for tensor categories. J. Lond. Math. Soc. (2) 83, 57–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Galindo C.: Crossed product tensor categories. J. Algebra (1) 337, 233–252 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Galindo C.: On braided and ribbon unitary fusion categories. Can. Math. Bull. (57) 192, 506–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gelaki S., Naidu D., Nikshych D.: Centers of graded fusion categories. Algebra Number Theory 3(8), 959–990 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gelaki S., Nikshych D.: Nilpotent fusion categories. Adv. Math. 217, 1053–1071 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Joyal A., Street R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirillov Jr, A.: On G-equivariant modular categories. arXiv:math/0401119 (2004)

  23. Mueger M.: Galois theory for braided tensor categories and the modular closure. Adv. Math. 150, 151–201 (2000)

    Article  MathSciNet  Google Scholar 

  24. Mueger M.: From subfactors to categories and topology II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 180, 159–219 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Naidu D.: Crossed pointed categories and their equivariantizations. Pac. J. Math. 247(2), 477–496 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ostrik V.: Module categories, weak Hopf algebras and modular invariants. Transform. Groups 8, 177–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Z.: Topological quantum computation. American Mathematical Society, vol.112, pp.115. CBMS Regional Conference Series in Mathematics (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghan Wang.

Additional information

Communicated by Y. Kawahigashi

S.-X. C and Z. W are partially supported by NSF DMS 1108736 and J.P. by CONICET, ANPCyT and Secyt-UNC. C. G. was partially supported by the FAPA funds from vicerrectoria de investigaciones de la Universidad de los Andes. This project began while J.P. was at Universidad de Buenos Aires, and the support of that institution is gratefully acknowledged. Part of this work was done during visits of C.G. to Microsoft Research Station Q and J.P. to University of California, Santa Barbara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S.X., Galindo, C., Plavnik, J.Y. et al. On Gauging Symmetry of Modular Categories. Commun. Math. Phys. 348, 1043–1064 (2016). https://doi.org/10.1007/s00220-016-2633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2633-8

Keywords

Navigation