Skip to main content
Log in

Fault-Tolerant Quantum Error Correction for non-Abelian Anyons

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

While topological quantum computation is intrinsically fault-tolerant at zero temperature, it loses its topological protection at any finite temperature. We present a scheme to protect the information stored in a system supporting non-cyclic anyons against thermal and measurement errors. The correction procedure builds on the work of Gács (J Comput Syst Sci 32:15–78, 1986. doi:10.1145/800061.808730) and Harrington (Analysis of quantum error-correcting codes: symplectic lattice codes and toric code, 2004) and operates as a local cellular automaton. In contrast to previously studied schemes, our scheme is valid for both abelian and non-abelian anyons and accounts for measurement errors. We analytically prove the existence of a fault-tolerant threshold for a certain class of non-Abelian anyon models, and numerically simulate the procedure for the specific example of Ising anyons. The result of our simulations are consistent with a threshold between \({10^{-4}}\) and \({10^{-3}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gács P.: Reliable computation with cellular automata. J. Comput. Syst. Sci. 32, 15–78 (1986). doi:10.1145/800061.808730

    Article  MathSciNet  MATH  Google Scholar 

  2. Harrington, J.W.: Analysis of Quantum Error-Correcting Codes: Symplectic Lattice Codes and Toric Code. Ph.D. thesis, California Institude of Technology (2004). URL http://thesis.library.caltech.edu/1747/1/jimh_thesis.pdf

  3. Das Sarma S., Freedman M., Nayak C.: Majorana zero modes and topological quantum computation. NPJ Quantum Inf. 1, 15001 (2015). doi:10.1038/npjqi.2015.1

    Article  ADS  Google Scholar 

  4. Freedman M., Nayak C., Walker K.: Towards universal topological quantum computation in the \({\nu = \frac{5}{2}}\) fractional quantum Hall state. Phys. Rev. B 73, 245307 (2006). doi:10.1103/PhysRevB.73.245307

    Article  ADS  Google Scholar 

  5. Bonderson, P., Das Sarma, S., Freedman, M., Nayak, C.: A Blueprint for a Topologically Fault-tolerant Quantum Computer (2010). arXiv:1003.2856

  6. Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003). doi:10.1016/S0003-4916(02)00018-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Nayak C., Simon S.H., Freedman M., Sarma S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008). doi:10.1103/RevModPhys.80.1083

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Trebst S., Troyer M., Wang Z., Ludwig A.W.W.: A short introduction to Fibonacci anyon models. Prog. Theor. Phys. Suppl. 176, 384 (2008). doi:10.1143/PTPS.176.384

    Article  ADS  MATH  Google Scholar 

  9. Stern A.: Non-Abelian states of matter. Nat. Phys. 464, 187–193 (2010). doi:10.1038/nature08915

    Article  Google Scholar 

  10. Freedman M.H., Larsen M., Wang Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227, 605–622 (2002). doi:10.1007/s002200200645

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Freedman M.H., Kitaev A., Wang Z.: Simulation of topological field theories by quantum computer. Commun. Math. Phys. 227, 587–603 (2002). doi:10.1007/s002200200635

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Budich J.C., Walter S., Trauzettel B.: Failure of proctection of Majorana based qubits against decoherence. Phys. Rev. B 85, 121405 (2012). doi:10.1103/PhysRevB.85.121405

    Article  ADS  Google Scholar 

  13. Schmidt M.J., Rainis D., Loss D.: Decoherence of Majorana qubits by noisy gates. Phys. Rev. B 86, 085414 (2012). doi:10.1103/PhysRevB.86.085414

    Article  ADS  Google Scholar 

  14. Pedrocchi F.L., Bonesteel N.E., DiVincenzo D.P.: Monte Carlo studies of the properties of the Majorana quantum error correction code: is self-correction possible during braiding?. Phys. Rev. B 92, 115441 (2015). doi:10.1103/PhysRevB.92.115441

    Article  ADS  Google Scholar 

  15. Pedrocchi F.L., DiVincenzo D.P.: Majorana braiding with thermal noise. Phys. Rev. Lett. 115, 120402 (2015). doi:10.1103/PhysRevLett.115.120402

    Article  ADS  Google Scholar 

  16. Goldstein G., Chamon C.: Decay rates for topological memories encoded with Majorana fermions. Phys. Rev. B 84, 205109 (2011). doi:10.1103/PhysRevB.84.205109

    Article  ADS  Google Scholar 

  17. Konschelle F., Hassler F.: Effects of nonequilibrium noise on a quantum memory encoded in Majorana zero modes. Phys. Rev. B 88, 075431 (2013). doi:10.1103/PhysRevB.88.075431

    Article  ADS  Google Scholar 

  18. Rainis D., Loss D.: Majorana qubit decoherence by quasiparticle poisoning. Phys. Rev. B 85, 174533 (2012). doi:10.1103/PhysRevB.85.174533

    Article  ADS  Google Scholar 

  19. Wootton J.R., Burri J., Iblisdir S., Loss D.: Error correction for non-Abelian topological quantum computation. Phys. Rev. X 4, 011051 (2014). doi:10.1103/PhysRevX.4.011051

    Google Scholar 

  20. Hamma A., Castelnovo C., Chamon C.: Toric-boson model: toward a topological quantum memory at finite temperature. Phys. Rev. B 79, 245122 (2009). doi:10.1103/PhysRevB.79.245122

    Article  ADS  Google Scholar 

  21. Chesi S., Röthlisberger B., Loss D.: Self-correcting quantum memory in a thermal environment. Phys. Rev. A 82, 022305 (2010). doi:10.1103/PhysRevA.82.022305

    Article  ADS  Google Scholar 

  22. Pedrocchi F.L., Hutter A., Wootton J.R., Loss D.: Enhanced thermal stability of the toric code through coupling to a bosonic bath. Phys. Rev. A 88, 062313 (2013). doi:10.1103/PhysRevA.88.062313

    Article  ADS  Google Scholar 

  23. Landon-Cardinal O., Poulin D.: Local topological order inhibits thermal stability in 2D. Phys. Rev. Lett. 110, 090502 (2013). doi:10.1103/PhysRevLett.110.090502

    Article  ADS  Google Scholar 

  24. Landon-Cardinal O., Yoshida B., Poulin D., Preskill J.: Perturbative instability of quantum memory based on effective long-range interactions. Phys. Rev. A 91(3), 032303 (2015). doi:10.1103/PhysRevA.91.032303

    Article  ADS  Google Scholar 

  25. Dennis E., Kitaev A., Landhal A., Presill J.: Topological quantum memory. J. Math. Phys. 43, 4452 (2002). doi:10.1063/1.1499754

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Duclos-Cianci G., Poulin D.: Fast decoders for topological quantum codes. Phys. Rev. Lett. 104, 050504 (2010). doi:10.1103/PhysRevLett.104.050504

    Article  ADS  Google Scholar 

  27. Duclos-Cianci, G., Poulin, D.: A renormalization group decoding algorithm for topological quantum codes. Inf. Theory Workshop 1–5 (2010). doi:10.1109/CIG.2010.5592866

  28. Wang, D.S., Fowler, A.G., Stephens, A.M., Hollenberg, L.C.L.: Threshold error rates for the toric and surface codes. Quantum Inf. Comput. 10, 456 (2010). URL https://arxiv.org/abs/0905.0531

  29. Wootton J.R., Loss D.: High threshold error correction for the surface code. Phys. Rev. Lett. 109, 160503 (2012). doi:10.1103/PhysRevLett.109.160503

    Article  ADS  Google Scholar 

  30. Bravyi S., Haah J.: Quantum self-correction in the 3D cubic code model. Phys. Rev. Lett. 111, 200501 (2013). doi:10.1103/PhysRevLett.111.200501

    Article  ADS  Google Scholar 

  31. Anwar H., Brown B.J., Campbell E.T., Browne D.E.: Efficient decoders for qudit topological codes. New J. Phys. 16, 063038 (2014). doi:10.1088/1367-2630/16/6/063038

    Article  ADS  MathSciNet  Google Scholar 

  32. Hutter A., Wootton J.R., Loss D.: Efficient Markov chain Monte Carlo algorithm for the surface code. Phys. Rev. A 89, 022326 (2014). doi:10.1103/PhysRevA.89.022326

    Article  ADS  Google Scholar 

  33. Bravyi S., Suchara M., Vargo A.: Efficient algorithms for maximum likelihood decoding in the surface code. Phys. Rev. A 90, 032326 (2014). doi:10.1103/PhysRevA.90.032326

    Article  ADS  Google Scholar 

  34. Herold M., Campbell E.T., Eisert J., Kastoryano M.J.: Cellular-automaton decoders for topological quantum memories. NPJ Quantum Inf. 1, 15010 (2015). doi:10.1038/npjqi.2015.10

    Article  ADS  Google Scholar 

  35. Wootton J.R.: A simple decoder for topological codes. Entropy 17, 1946 (2015). doi:10.3390/e17041946

    Article  ADS  MathSciNet  Google Scholar 

  36. Andrist R.S., Wootton J.R., Katzgraber H.G.: Error thresholds for Abelian quantum double models: increasing the bit-flip stability of topological quantum memory. Phys. Rev. A 91, 042331 (2015). doi:10.1103/PhysRevA.91.042331

    Article  ADS  Google Scholar 

  37. Fowler A.G., Stephens A.M., Groszkowski P.: High-threshold universal quantum computation on the surface code. Phys. Rev. A 80, 052312 (2009). doi:10.1103/PhysRevA.80.052312

    Article  ADS  Google Scholar 

  38. Duclos-Cianci, G., Poulin, D.: Fault-tolerant renormalization group decoder for Abelian topological codes. Quantum Inf. Comput. 14(9–10), 0721–0740 (2014). URL http://epiq.physique.usherbrooke.ca/data/files/publications/DP13a1.pdf

  39. Watson F.H.E., Anwar H., Brown D.E.: A fast fault-tolerant decoder for qubit and qudit surface codes. Phys. Rev. A 92, 032309 (2015). doi:10.1103/PhysRevA.92.032309

    Article  ADS  Google Scholar 

  40. Fowler, A.G.: Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time. QIC 15, 0145–0158 (2015). URL http://arxiv.org/abs/1307.1740

  41. Herold, M., Kastoryano, M.J., Campbell, E.T., Eisert, J.: Fault tolerant dynamical decoders for topological quantum memories (2015). arXiv:1511.05579

  42. Brell C.G., Burton S., Dauphinais G., Flammia S.T., Poulin D.: Thermalization, error correction, and memory lifetime for Ising anyon systems. Phys. Rev. X 4, 031058 (2014). doi:10.1103/PhysRevX.4.031058

    Google Scholar 

  43. Burton S., Brell C.G., Flammia S.T.: Classical simulation of quantum error correction in a Fibonacci anyon code. Phys. Rev. A 95, 022309 (2017). doi:10.1103/PhysRevA.95.022309

    Article  ADS  Google Scholar 

  44. Wootton J.R., Hutter A.: Active error correction for Abelian and non-Abelian anyons. Phys. Rev. A 93, 022318 (2016). doi:10.1103/PhysRevA.93.022318

    Article  ADS  Google Scholar 

  45. Hutter A., Wootton J.R.: Continuous error correction for Ising anyons. Phys. Rev. A 93, 042327 (2016). doi:10.1103/PhysRevA.93.042327

    Article  ADS  Google Scholar 

  46. Gray, L.: A reader’s guide to P. Gács’ “positive rates” paper: “Reliable cellular automata with self-organization”. J. Stat. Phys. 103, 1–44 (2001). URL http://www.math.umn.edu/~grayx004/pdf/gacs2.pdf

  47. Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006). doi:10.1016/j.aop.2005.10.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Bonderson, P.: Non-Abelian Anyons and Interferometry. Ph.D. thesis, California Institude of Technology (2007). URL http://thesis.library.caltech.edu/2447/2/thesis.pdf

  49. Mac Lane S.: Categories for the Working Mathematician. Springer, New York (1991)

    MATH  Google Scholar 

  50. Levaillant C., Bauer B., Freedman M., Wang Z., Bonderson P.: Universal gates via fusion and measurement operations on \({\rm{SU} (2)_{4}}\) anyons. Phys. Rev. A 92, 012301 (2015). doi:10.1103/PhysRevA.92.012301

    Article  ADS  Google Scholar 

  51. Bonderson P., Freedman M., Nayak C.: Measurement-only topological quantum computation. Phys. Rev. Lett. 101, 010501 (2008). doi:10.1103/PhysRevLett.101.010501

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Bonderson P., Freedman M., Nayak C.: Measurement-only topological quantum computation via Anyonic Interferometry. Ann. Phys. 324, 787–826 (2009). doi:10.1016/j.aop.2008.09.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Verlinde E.: Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys. B 300, 360–376 (1988). doi:10.1016/0550-3213(88)90603-7

    Article  ADS  MATH  Google Scholar 

  54. Rowell E., Stong R., Wang Z.: On classification of modular tensor categories. Commun. Math. Phys. 292, 343–389 (2009). doi:10.1007/s00220-009-0908-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Bais F.A., van Driel P., de Wild Propitius M.: Quantum symmetries in discrete gauge theories. Phys. Lett. B 280, 63–67 (1992). doi:10.1016/0370-2693(92)90773-W

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. de Wild Propitius, M., Bais, F.A.: Discrete gauge theories (1995). arXiv:hep-th/9511201

  57. Xu C., Ludwig A.W.W.: Topological quantum liquids with quaternion non-Abelian statistics. Phys. Rev. Lett. 108, 047202 (2012). doi:10.1103/PhysRevLett.108.047202

    Article  ADS  Google Scholar 

  58. Tambara D., Yamagami S.: Tensor categories with fusion rules of self-duality for finite Abelian groups. J. Algebra 209, 692–707 (1998). doi:10.1006/jabr.1998.7558

    Article  MathSciNet  MATH  Google Scholar 

  59. Borel E.: Les probabilités dénombrables et leurs applications arithmétiques. Rend. Cric. Mat. Palermo (2) 27, 247–271 (1909)

    Article  MATH  Google Scholar 

  60. Cantelli, F.P.: Sulla probabilitá come limite della frequenza. Atti Accad. Naz. Lincei 26, 39–45 (1917)

  61. Gács, P.: Self-correcting two-dimensoinal array. Adv. Comput. Res. 5, 223–326 (1989). URL http://www.cs.bu.edu/~gacs/papers/self-correcting-2d.pdf

  62. Bravyi S.: Universal quantum computation with the \({\nu = \frac{5}{2}}\) fractional quantum Hall state. Phys. Rev. A 73, 042313 (2006). doi:10.1103/PhysRevA.73.042313

    Article  ADS  Google Scholar 

  63. Nayak C., Wilczek F.: 2n-quasiholes states realize \({2^{n-1}}\)-dimensional spinor braiding statistics in paired quantum Hall states. Nucl. Phys. B 479, 529 (1996). doi:10.1016/0550-3213(96)00430-0

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Aaronson S., Gottesman D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004). doi:10.1103/PhysRevA.70.052328

    Article  ADS  Google Scholar 

  65. Kolmogorov V., Blossom V.: A new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1, 43 (2009). doi:10.1007/s12532-009-0002-8

    Article  MathSciNet  MATH  Google Scholar 

  66. Beverland, A., Buerschaper, König, R., Pastawski, F., Preskill, J., Sijhner, S.: Protected gates for topological quantum field theories. J. Math. Phys. 57, 022201 (2016). doi:10.1063/1.4939783

  67. Freedman M.H., Meyer D.A.: Projective plane and planar quantum codes. Found. Comput. Math. 1, 325–332 (2001). doi:10.1007/s102080010013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Dauphinais.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauphinais, G., Poulin, D. Fault-Tolerant Quantum Error Correction for non-Abelian Anyons. Commun. Math. Phys. 355, 519–560 (2017). https://doi.org/10.1007/s00220-017-2923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2923-9

Navigation