Skip to main content

Advertisement

Log in

The Bogoliubov Free Energy Functional II: The Dilute Limit

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyse the canonical Bogoliubov free energy functional in three dimensions at low temperatures in the dilute limit. We prove existence of a first-order phase transition and, in the limit \({\int V\to 8\pi a}\), we determine the critical temperature to be \({T_{\rm{c}}=T_{\rm{fc}}(1+1.49\rho^{1/3}a)}\) to leading order. Here, \({T_{\rm{fc}}}\) is the critical temperature of the free Bose gas, ρ is the density of the gas and a is the scattering length of the pair-interaction potential V. We also prove asymptotic expansions for the free energy. In particular, we recover the Lee–Huang–Yang formula in the limit \({\int V\to 8\pi a}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold P., Moore G.: BEC transition temperature of a dilute homogeneous imperfect Bose gas. Phys. Rev. Lett. 87, 120401 (2001)

    Article  ADS  Google Scholar 

  2. Andersen J.O.: Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 76, 599 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  Google Scholar 

  4. Baym G., Blaizot J.-P., Holzmann M., Laloë F., Vautherin D.: Bose–Einstein transition in a dilute interacting gas. Eur. Phys. J. B 24, 107–124 (2001)

    Article  ADS  Google Scholar 

  5. Bijlsma M., Stoof H.T.C.: Renormalization group theory of the three-dimensional dilute Bose gas. Phys. Rev. A 54, 5085 (1996)

    Article  ADS  Google Scholar 

  6. Bogoliubov N.N.: On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947)

    MathSciNet  Google Scholar 

  7. Critchley R.H., Solomon A.: A variational approach to superfluidity. J. Stat. Phys. 14, 381–393 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  8. Davis K.B., Mewes M.O., Andrews M.R., van Druten N.J., Durfee D.S., Kurn D.M., Ketterle W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  Google Scholar 

  9. Ensher J.R. et al.: Bose–Einstein condensation in a dilute gas: Measurement of energy and ground-state occupation. Phys. Rev. Lett. 77, 4984 (1996)

    Article  ADS  Google Scholar 

  10. Erdös L., Schlein B., Yau H.-T.: Ground-state energy of a low-density Bose gas: a second-order upper bound. Phys. Rev. A 78, 053627 (2008)

    Article  ADS  Google Scholar 

  11. Feynman R.P.: Atomic theory of the λ transition in Helium. Phys. Rev. 91, 1291–1301 (1953)

    Article  MATH  ADS  Google Scholar 

  12. Feynman R.P.: Atomic theory of luquid helium near absolute zero. Phys. Rev. 91, 1301–1308 (1953)

    Article  MATH  ADS  Google Scholar 

  13. Gaunt A.L. et al.: Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett. 110, 200406 (2013)

    Article  ADS  Google Scholar 

  14. Gerbier F. et al.: Critical temperature of a trapped, weakly interacting Bose gas. Phys. Rev. Lett. 92, 030405 (2004)

    Article  ADS  Google Scholar 

  15. Giuliani A., Seiringer R.: The ground state energy of the weakly interacting Bose gas at high density. J. Stat. Phys. 135, 915–934 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Glassgold A.E., Kaufman A.N., Watson K.M.: Statistical mechanics for the nonideal Bose gas. Phys. Rev. 120, 660 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, K.: Studies in Statistical Mechanics, vol. II. In: deBoer, J., Uhlenbeck, G. (eds) North-Holland (1964)

  18. Huang K.: Transition temperature of a uniform imperfect Bose gas. Phys. Rev. Lett. 83, 3770 (1999)

    Article  ADS  Google Scholar 

  19. Huang K., Yang C.N.: Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev. 105, 767–775 (1957)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Kashurnikov V.A., Prokof’ev N.V., Svistunov B.V.: Critical temperature shift in weakly interacting Bose gas. Phys. Rev. Lett. 87, 120402 (2001)

    Article  ADS  Google Scholar 

  21. Lee T., Yang C.N.: Low-temperature behavior of a dilute Bose system of hard spheres i. Equilibrium properties. Phys. Rev. 112, 1419–1429 (1958)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Lee T.D., Huang K., Yang C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The mathematics of the Bose gas and its condensation. Oberwolfach Seminars, Birkhäuser (2005)

  24. Lieb E.H., Seiringer R., Yngvason J.: Justification of c-number substitutions in Bosonic Hamiltonians. Phys. Rev. Lett. 94, 080401 (2005)

    Article  ADS  Google Scholar 

  25. Napiórkowski, M., Reuvers, R., Solovej, J.P.: Bogoliubov free energy functional I. Existence of minimizers and phase diagram (2015). arXiv:1511.05935

  26. Napiórkowski, M., Reuvers, R., Solovej, J.P.: Calculation of the critical temperature of a dilute Bose gas in the bogoliubov approximation (2017). arXiv:1706.01822

  27. Nho K., Landau D.P.: Bose–Einstein condensation temperature of a homogeneous weakly interacting Bose gas: PIMC study. Phys. Rev. A 70, 053614 (2004)

    Article  ADS  Google Scholar 

  28. Seiringer R.: Free energy of a dilute Bose gas: lower bound. Commun. Math. Phys. 279, 595–636 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Seiringer R., Ueltschi D.: Rigorous upper bound on the critical temperature of dilute bose gases. Phys. Rev. B 80, 014502 (2009)

    Article  ADS  Google Scholar 

  30. Smith, R.P.: Effects of interactions on Bose–Einstein condensation. In: Proukasis, N.P., Snoke, D.W., Littlewood, P.B. (eds.), Universal Themes of Bose–Einstein Condensation. Cambridge University Press, Cambridge (2017)

  31. Smith R.P. et al.: Effects of interactions on the critical temperature of a trapped Bose gas. Phys. Rev. Lett. 106, 250403 (2011)

    Article  ADS  Google Scholar 

  32. Solovej J.P.: Upper bounds to the ground state energies of the one- and two-component charged Bose gases. Commun. Math. Phys. 266, 797–818 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Toyoda T.: A microscopic theory of the lambda transition. Ann. Phys. 141, 154–178 (1982)

    Article  ADS  Google Scholar 

  34. Yau H.-T., Yin J.: The second order upper bound for the ground energy of a Bose gas. J. Stat. Phys. 136, 453–503 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Yin J.: Free energies of dilute Bose gases: upper bound. J. Stat. Phys. 141, 683–726 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Reuvers.

Additional information

Communicated by R. Seiringer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napiórkowski, M., Reuvers, R. & Solovej, J.P. The Bogoliubov Free Energy Functional II: The Dilute Limit. Commun. Math. Phys. 360, 347–403 (2018). https://doi.org/10.1007/s00220-017-3064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3064-x

Navigation