Skip to main content

Advertisement

Log in

Neural responses in multiple basal ganglia regions following unilateral dopamine depletion in behaving rats performing a treadmill locomotion task

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

To investigate basal ganglia (BG) neural responses to dopamine (DA) depletion, multiple channel, single unit recording was carried out in freely moving rats performing a treadmill locomotion task. Single unit activity from 64 microelectrodes in the striatum (STR), globus pallidus (GP), subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr) was recorded simultaneously before and after a unilateral DA lesion induced by microinjection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle. The DA lesion resulted in an impairment of treadmill walking manifested by a significant decrease in swing time of both forelimbs. The stance time, however, increased significantly only in ipsilateral (good) forelimbs, reflecting compensatory changes in the good limb for motor deficits. Neural activity in the STR and GP ipsilateral to the lesion decreased during the 7-day period following the DA lesion. Conversely, an increase in spike discharges appeared in the ipsilateral SNr and STN several days after the DA lesion. Changes in the type of neural response associated with treadmill locomotion were also found in some neurons after DA depletion. Such changes were most prominent in the STR. Limb movement-related neural activity increased significantly mainly in the SNr. Additionally, neural responses to the tone cue associated with the onset of the treadmill diminished greatly in the lesioned side of the BG. Increased activity in SNr neurons is consistent with the concept that inhibition of thalamus contributes to hypokinesis in the absence of DA. Substantial decrease in striatal activity supports a concept that DA loss leads to a global suppression of recurrent cortical striatal thalamic activity that degrades normal information flow in Parkinson’s diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbruzzese G, Berardelli A (2003) Sensorimotor integration in movement disorders. Mov Disord 18:231–240

    Article  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia. Disord Trends Neurosci 12:366–375

    Article  CAS  Google Scholar 

  • Alexander GE, Crutcher, MD Delong MR (1990) Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, ‘prefrontal’ and ‘limbic’ functions. Prog Brain Res 85:119–146

    Article  PubMed  CAS  Google Scholar 

  • Aosaki T, Graybiel AM, Kimura M (1994) Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science 265:412–415

    Article  PubMed  CAS  Google Scholar 

  • Bares M, Rektor I (2001) Basal ganglia involvement in sensory and cognitive processing. A depth electrode CNV study in human subjects. Clin Neurophysiol 112:2022–2030

    Article  PubMed  CAS  Google Scholar 

  • Bezard E, Boraud T, Bioulac B, Gross CE (1999) Involvement of the subthalamic nucleus in glutamatergic compensatory mechanisms. Eur J Neurosci 11:2167–2170

    Article  PubMed  CAS  Google Scholar 

  • Boraud T, Bezard E, Guehl D, Bioulac B, Gross C (1998) Effects of l-DOPA on neuronal activity of the globus pallidus externalis (GPe) and globus pallidus internalis (GPi) in the MPTP-treated monkey. Brain Res 787:157–160

    Article  PubMed  CAS  Google Scholar 

  • Boraud T, Bezard E, Bioulac B, Gross CE (2000) Ratio of inhibited-to-activated pallidal neurons decreases dramatically during passive limb movement in the MPTP-treated monkey. J Neurophysiol 83:1760–1763

    PubMed  CAS  Google Scholar 

  • Burbaud P, Gross C, Benazzouz A, Coussemacq M, Bioulac B (1995) Reduction of apomorphine-induced rotational behaviour by subthalamic lesion in 6-OHDA lesioned rats is associated with a normalization of firing rate and discharge pattern of pars reticulata neurons. Exp Brain Res 105:48–58

    Article  PubMed  CAS  Google Scholar 

  • Calabresi P, Mercuri NB, Sancesario G, Bernardi G (1993) Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson’s disease. Brain 116(Pt 2):433–452

    PubMed  Google Scholar 

  • Calon F, Grondin R, Morissette M, Goulet M, Blanchet PJ, Di Paolo T, Bedard PJ (2000) Molecular basis of levodopa-induced dyskinesias. Ann Neurol 47:S70–S78

    PubMed  CAS  Google Scholar 

  • Chang J–Y, Janak PH, Woodward DJ (1998) Comparison of mesocorticolimbic neuronal responses during cocaine and heroin self-administration in freely moving rats. J Neurosci 18:3098–3115

    PubMed  CAS  Google Scholar 

  • Chang JW, Wachtel SR, Young D, Kang UJ (1999) Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson’s disease: studies on medial forebrain bundle and striatal lesions. Neuroscience 88:617–628

    Article  PubMed  CAS  Google Scholar 

  • Chang JY, Shi LH, Luo F, Woodward DJ (2003) High frequency stimulation of the subthalamic nucleus improves treadmill locomotion in unilateral 6-hydroxydopamine lesioned rats. Brain Res 983:174–184

    Article  PubMed  CAS  Google Scholar 

  • Chapin JK, Loeb GE, Woodward DJ (1980) A simple technique for determination of footfall patterns of animals during treadmill locomotion. J Neurosci Methods 2:97–102

    Article  PubMed  CAS  Google Scholar 

  • Chen MT, Morales M, Woodward DJ, Hoffer BJ, Janak PH (2001) In vivo extracellular recording of striatal neurons in the awake rat following unilateral 6-hydroxydopamine lesions. Exp Neurol 171:72–83

    Article  PubMed  CAS  Google Scholar 

  • Cho J, West MO (1997) Distributions of single neurons related to body parts in the lateral striatum of the rat. Brain Res 756:241–246

    Article  PubMed  CAS  Google Scholar 

  • Chritin M, Feuerstein C, Savasta M (1993) Time-course of changes in striatal levels of DA uptake sites, DA D2 receptor and preproenkephalin mRNAs after nigrostriatal dopaminergic denervation in the rat. Brain Res Mol Brain Res 19:318–322

    Article  PubMed  CAS  Google Scholar 

  • Cohen AH, Gans C (1975) Muscle activity in rat locomotion: movement analysis and electromyography of the flexors and extensors of the elbow. J Morphol 146:177–196

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1977) Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science 197:596–598

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1990) primate models of movement disorders of basal ganglia origin. Trends Nerusci 13:281–285

    Article  CAS  Google Scholar 

  • Donoghue JP, Herkenham M (1986) Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Res 365:397–403

    Article  PubMed  CAS  Google Scholar 

  • Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547:142–151

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320

    Article  PubMed  CAS  Google Scholar 

  • Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127:4–20

    Article  PubMed  Google Scholar 

  • Harrison MB, Wiley RG, Wooten GF (1990) Selective localization of striatal D1 receptors to striatonigral neurons. Brain Res 528:317–322

    Article  PubMed  CAS  Google Scholar 

  • Hattori S, Li Q, Matsui N, Nishino H (1993) Treadmill running test for evaluating locomotor activity after 6-OHDA lesions and dopaminergic cell grafts in the rat. Brain Res Bull 31:433–435

    Article  PubMed  CAS  Google Scholar 

  • Hirsch EC, Hoglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, Cohen-Salmon C, Launay JM (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 65:89–100

    PubMed  Google Scholar 

  • Hollerman JR, Grace AA (1992) Subthalamic nucleus cell firing in the 6-OHDA-treated rat: basal activity and response to haloperidol. Brain Res 590:291–299

    Article  PubMed  CAS  Google Scholar 

  • Kish LJ, Palmer MR, Gerhardt GA (1999) Multiple single-unit recordings in the striatum of freely moving animals: effects of apomorphine and d-amphetamine in normal and unilateral 6-hydroxydopamine-lesioned rats. Brain Res 833:58–70

    Article  PubMed  CAS  Google Scholar 

  • Kita H, Kita T (2001) Number, origins, and chemical types of rat pallidostriatal projection neurons. J Comp Neurol 437:438–448

    Article  PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Rebec GV (1996) Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J Neurophysiol 75:142–153

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Kornhuber ME (1986) Presynaptic dopaminergic modulation of cortical input to the striatum. Life Sci 39:669–674

    Article  CAS  Google Scholar 

  • Kreiss DS, Mastropietro CW, Rawji SS, Walters JR (1997) The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson’s disease. J Neurosci 17:6807–6819

    PubMed  CAS  Google Scholar 

  • Le Moine C, Normand E, Bloch B (1991) Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene. Proc Natl Acad Sci USA 88:4205–4209

    Article  PubMed  CAS  Google Scholar 

  • Lidsky TI, Manetto C, Schneider JS (1985) A consideration of sensory factors involved in motor functions of the basal ganglia. Brain Res 356:133–146

    PubMed  CAS  Google Scholar 

  • MacLeod NK, Ryman A, Arbuthnott GW (1990) Electrophysiological properties of nigrothalamic neurons after 6-hydroxydopamine lesions in the rat. Neuroscience 38:447–456

    Article  PubMed  CAS  Google Scholar 

  • Magill PJ, Bolam JP, Bevan MD (2001) Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106:313–330

    Article  PubMed  CAS  Google Scholar 

  • Marshall JF, Berrios N, Sawyer S (1980) Neostriatal dopamine and sensory inattention. J Comp Physiol Psychol 94:833–846

    Article  PubMed  CAS  Google Scholar 

  • Marshall JF, Navarrete R, Joyce JN (1989) Decreased striatal D1 binding density following mesotelencephalic 6-hydroxydopamine injections: an autoradiographic analysis. Brain Res 493:247–257

    Article  PubMed  CAS  Google Scholar 

  • McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537

    Article  PubMed  CAS  Google Scholar 

  • Meador-Woodruff JH, Mansour A, Healy DJ, Kuehn R, Zhou QY, Bunzow JR, Akil H, Civelli O, Watson SJ Jr (1991) Comparison of the distributions of D1 and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology 5:231–242

    PubMed  CAS  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50:381–425

    Article  PubMed  CAS  Google Scholar 

  • Mishra RK, Marshall AM, Varmuza SL (1980) Supersensitivity in rat caudate nucleus: effects of 6-hydroxydopamine on the time course of dopamine receptor and cyclic AMP changes. Brain Res 200:47–57

    Article  PubMed  CAS  Google Scholar 

  • Narang N, Wamsley JK (1995) Time dependent changes in DA uptake sites, D1 and D2 receptor binding and mRNA after 6-OHDA lesions of the medial forebrain bundle in the rat brain. J Chem Neuroanat 9:41–53

    Article  PubMed  CAS  Google Scholar 

  • Neve KA, Kozlowski MR, Marshall JF (1982) Plasticity of neostriatal dopamine receptors after nigrostriatal injury: relationship to recovery of sensorimotor functions and behavioral supersensitivity. Brain Res 244:33–44

    Article  PubMed  CAS  Google Scholar 

  • Ni ZG, Bouali-Benazzouz R, Gao DM, Benabid AL, Benazzouz A (2001) Time-course of changes in firing rates and firing patterns of subthalamic nucleus neuronal activity after 6-OHDA-induced dopamine depletion in rats. Brain Res 899:142–147

    Article  PubMed  CAS  Google Scholar 

  • Nisenbaum ES, Stricker EM, Zigmond MJ, Berger TW (1986) Long-term effects of dopamine-depleting brain lesions on spontaneous activity of type II striatal neurons: relation to behavioral recovery. Brain Res 398:221–230

    Article  PubMed  CAS  Google Scholar 

  • Orr WB, Stricker EM, Zigmond MJ, Berger TW (1987) Effects of dopamine depletion on the spontaneous activity of type I striatal neurons: relation to local dopamine concentration and motor behavior. Synapse 1:461–469

    Article  PubMed  CAS  Google Scholar 

  • Pan HS, Walters JR (1988) Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat. Synapse 2:650–656

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, San Diego

    Google Scholar 

  • Pifl C, Reither H, Hornykiewicz O (1992) Functional sensitization of striatal dopamine D1 receptors in the 6-hydroxydopamine-lesioned rat. Brain Res 572:87–93

    Article  PubMed  CAS  Google Scholar 

  • Prokopenko VF, Pawlak AP, West MO (2004) Fluctuations in somatosensory responsiveness and baseline firing rates of neurons in the lateral striatum of freely moving rats: effects of intranigral apomorphine. Neuroscience 125:1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Abdala P, Obeso JA (2000) Excitatory responses in the ‘direct’ striatonigral pathway: effect of nigrostriatal lesion. Mov Disord 15:795–803

    Article  PubMed  CAS  Google Scholar 

  • Rohlfs A, Nikkhah G, Rosenthal C, Rundfeldt C, Brandis A, Samii M, Loscher W (1997) Hemispheric asymmetries in spontaneous firing characteristics of substantia nigra pars reticulata neurons following a unilateral 6-hydroxydopamine lesion of the rat nigrostriatal pathway. Brain Res 761:352–356

    Article  PubMed  CAS  Google Scholar 

  • Sanderson P, Mavoungou R, Albe-Fessard D (1986) Changes in substantia nigra pars reticulata activity following lesions of the substantia nigra pars compacta. Neurosci Lett 67:25–30

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Romo R (1992) Role of primate basal ganglia and frontal cortex in the internal generation of movements. I. Preparatory activity in the anterior striatum. Exp Brain Res 91:363–384

    Article  PubMed  CAS  Google Scholar 

  • Schwarting RK, Huston JP (1996) Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 49:215–266

    Article  PubMed  CAS  Google Scholar 

  • Shi L-H, Fei L, Woodward DJ, Chang JY (2004) Ensemble basal ganglia neural responses during spontaneous and treadmill locomotion tasks in rats. Exp Brain Res 157:303–314

    Article  PubMed  CAS  Google Scholar 

  • Staunton DA, Wolfe BB, Groves PM, Molinoff PB (1981) Dopamine receptor changes following destruction of the nigrostriatal pathway: lack of a relationship to rotational behavior. Brain Res 211:315–327

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Reiner A, Levine MS, Ariano MA (1993) Are neostriatal dopamine receptors co-localized? Trends Neurosci 16:299–305

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl 367:69–93

    PubMed  CAS  Google Scholar 

  • Vila M, Perier C, Feger J, Yelnik J, Faucheux B, Ruberg M, Raisman-Vozari R, Agid Y, Hirsch EC (2000) Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. Eur J Neurosci 12:337–344

    Article  PubMed  CAS  Google Scholar 

  • West MO (1998) Anesthetics eliminate somatosensory-evoked discharges of neurons in the somatotopically organized sensorimotor striatum of the rat. J Neurosci 18:9055–9068

    PubMed  CAS  Google Scholar 

  • West MO, Carelli RM, Pomerantz M, Cohen SM, Gardner JP, Chapin JK, Woodward DJ (1990) A region in the dorsolateral striatum of the rat exhibiting single-unit correlations with specific locomotor limb movements. J Neurophysiol 64:1233–1246

    PubMed  CAS  Google Scholar 

  • Wichmann T, Bergman H, Starr PA, Subramanian T, Watts RL, DeLong MR (1999) Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Exp Brain Res 125:397–409

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Jones EG (1977) Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex. J Comp Neurol 175:129–157

    Article  PubMed  CAS  Google Scholar 

  • Zeng BY, Dass B, Owen A, Rose S, Cannizzaro C, Tel BC, Jenner P (2002) 6-hydroxydopamine lesioning differentially affects alpha-synuclein mRNA expression in the nucleus accumbens, striatum and substantia nigra of adult rats. Neurosci Lett 322:33–36

    Article  PubMed  CAS  Google Scholar 

  • Zigmond MJ (1997) Do compensatory processes underlie the preclinical phase of neurodegenerative disease? Insights from an animal model of parkinsonism. Neurobiol Dis 4:247–253

    Article  PubMed  CAS  Google Scholar 

  • Zuch CL, Nordstroem VK, Briedrick LA, Hoernig GR, Granholm AC, Bickford PC (2000) Time course of degenerative alterations in nigral dopaminergic neurons following a 6-hydroxydopamine lesion. J Comp Neurol 427:440–454

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Qi Yu and Mr. Darrell Agee for technical assistance. This study was supported by NIH grants NS-43441, NS-45826 TW-006144 to JYC and NS-19608 to DJW. National Natural Science Foundation of China (30170307, 30370461) to FL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yu Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, JY., Shi, LH., Luo, F. et al. Neural responses in multiple basal ganglia regions following unilateral dopamine depletion in behaving rats performing a treadmill locomotion task. Exp Brain Res 172, 193–207 (2006). https://doi.org/10.1007/s00221-005-0312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0312-7

Keywords

Navigation