Skip to main content
Log in

Differential integration of visual and kinaesthetic signals to upright stance

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The present experiment was designed to assess the effect of active (deliberate) maintenance of a small forward (FL) or backward body lean (BL) (about 2° ankle flexion) with respect to the spontaneous direction of balance (or neutral posture, N) on postural balance. We questioned whether BL and FL stances, which impose a volitional proprioceptive control of the body-on-support angle, could efficiently reduce mediolateral displacements of the centre of pressure (CoP) induced by the visual motion of a room and darkness. Subjects (n = 15) were asked to stand upright quietly feet together while confronted to a large visual scene rolling to 10° on either side in peripheral vision (and surrounding vertical visual references in central vision) at 0.05 Hz. CoP displacements were recorded using a force platform. Analysis of medio-lateral CoP root-mean square showed that the effect of the moving room depends on the subject’s postural stability performance in the eyes open N stance condition. Two significant postural behaviours emerged. (1) The most stable subjects (G1) were not affected by the conditions of altered vision, but swayed more in BL stance than in the N stance. (2) The unstable subjects (G2) exhibited (i) larger CoP displacements in altered visual conditions and a greater coupling of the CoP with the motion of the visual scene, (ii) enhanced visual dependency with postural leaning, and (iii) decreased CoP displacements when leaning forward in the eyes open motionless scene. Interestingly, the visual quotient positively correlated with the proprioceptive quotient, indicating that the more the subjects relied heavily on the visual frame of reference (FOR) the more they were influenced by body leaning. This result suggested hence a lesser ability to use efficiently body-ground proprioceptive cues. On the whole, the present findings indicate that body leaning could provide a useful mean to assess the subject’s ability to use body-ground proprioceptive cues not only to improve postural stability during eyes opening (especially during forward leaning), but also as a mean to disclose subjects’ visual dependency and their associated difficulties to shift from visual to proprioceptive-based FOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anand V, Buckley J, Scally A, Elliott DB (2002) The effect of refractive blur on postural stability. Ophthalmic Physiol Opt 22:528–534

    PubMed  Google Scholar 

  • Anastasopoulos D, Bronstein AM (1999) A case of thalamic syndrome: somatosensory influences on visual orientation. J Neurol Neurosurg Psychiatr 67:390–394

    PubMed  CAS  Google Scholar 

  • Anastasopoulos D, Bronstein A, Haslwanter T, Fetter M, Dichgans J (1999) The role of somatosensory input for the perception of verticality. Ann NY Acad Sci 871:379–383

    PubMed  CAS  Google Scholar 

  • Avillac M, Deneve S, Olivier E, Pouget A, Duhamel JR (2005) Reference frames for representing visual and tactile locations in parietal cortex. Nat Neurosci 8:941–949

    PubMed  CAS  Google Scholar 

  • Babler TG, Ebenholtz SM (1989) Effects of peripheral circular contours on dynamic spatial orientation. Percept Psychophys 45:307–314

    PubMed  CAS  Google Scholar 

  • Barbieri G, Gissot AS, Fouque F, Casillas JM, Pozzo T, Perennou D (2008) Does proprioception contribute to the sense of verticality? Exp Brain Res 185:545–552

    PubMed  Google Scholar 

  • Bernard-Demanze L, Burdet C, Berger L, Rougier P (2004) Recalibration of somaesthetic plantar information in the control of undisturbed upright stance maintenance. J Integr Neurosci 3:433–451

    PubMed  CAS  Google Scholar 

  • Bernard-Demanze L, Vuillerme N, Ferry M, Berger L (2009) Can tactile plantar stimulation improve postural control of persons with superficial plantar sensory deficit? Aging Clin Exp Res 21:62–68

    PubMed  Google Scholar 

  • Bernardin D, Isableu B, Fourcade P, Bardy BG (2005) Differential exploitation of the inertia tensor in multi-joint arm reaching. Exp Brain Res 167:487–495

    PubMed  Google Scholar 

  • Berthoz A (1991) Reference frames for the perception and control of movement. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 81–110

    Google Scholar 

  • Blaszczyk JW, Hansen PD, Lowe DL (1993) Postural sway and perception of the upright stance stability borders. Perception 22:1333–1341

    PubMed  CAS  Google Scholar 

  • Bonnet CT, Faugloire E, Riley MA, Bardy BG, Stoffregen TA (2006) Motion sickness preceded by unstable displacements of the center of pressure. Hum Mov Sci 25:800–820

    PubMed  Google Scholar 

  • Carver S, Kiemel T, Van der KH, Jeka JJ (2005) Comparing internal models of the dynamics of the visual environment. Biol Cybern 92:147–163

    PubMed  Google Scholar 

  • Carver S, Kiemel T, Jeka JJ (2006) Modeling the dynamics of sensory reweighting. Biol Cybern 95:123–134

    PubMed  Google Scholar 

  • Chiari L, Bertani A, Cappello A (2000) Classification of visual strategies in human postural control by stochastic parameters. Hum Mov Sci 19:817–842

    Google Scholar 

  • Chiari L, Rocchi L, Cappello A (2002) Stabilometric parameters are affected by anthropometry and foot placement. Clin Biomech 17:666–677

    Google Scholar 

  • Claeys K, Brumagne S, Dankaerts W, Kiers H, Janssens L (2011) Decreased variability in postural control strategies in young people with non-specific low back pain is associated with altered proprioceptive reweighting. Eur J Appl Physiol 111:115–123

    PubMed  Google Scholar 

  • Collins JJ, De Luca CJ (1995) The effects of visual input on open-loop and closed-loop postural control mechanisms. Exp Brain Res 103:151–163

    PubMed  CAS  Google Scholar 

  • Deneve S, Pouget A (2004) Bayesian multisensory integration and cross-modal spatial links. J Physiol Paris 98:249–258

    PubMed  Google Scholar 

  • Dietz V (1998) Evidence for a load receptor contribution to the control of posture and locomotion. Neurosci Biobehav Rev 22:495–499

    PubMed  CAS  Google Scholar 

  • Dietz V, Duysens J (2000) Significance of load receptor input during locomotion: a review. Gait Posture 11:102–110

    PubMed  CAS  Google Scholar 

  • Dokka K, Kenyon RV, Keshner EA (2009) Influence of visual scene velocity on segmental kinematics during stance. Gait Posture 30:211–216

    PubMed  Google Scholar 

  • Dokka K, Kenyon RV, Keshner EA, Kording KP (2010) Self versus environment motion in postural control. PLoS Comput Biol 6:e1000680

    PubMed  Google Scholar 

  • Duarte M, Zatsiorsky VM (1999) Patterns of center of pressure migration during prolonged unconstrained standing. Mot Control 3:12–27

    CAS  Google Scholar 

  • Duarte M, Zatsiorsky VM (2002) Effects of body lean and visual information on the equilibrium maintenance during stance. Exp Brain Res 146:60–69

    PubMed  Google Scholar 

  • Durbaba R, Taylor A, Ellaway PH, Rawlinson S (2003) The influence of bag2 and chain intrafusal muscle fibers on secondary spindle afferents in the cat. J Physiol 550:263–278

    PubMed  CAS  Google Scholar 

  • Ebenholtz SM (1977) Determinants of the rod and frame effect: the role of retinal size. Percept Psychophys 22:531–538

    Google Scholar 

  • Ebenholtz SM, Callan JW (1980) Modulation of the rod and frame effect: retinal angle versus apparent size. Psychol Res 42:327–334

    Google Scholar 

  • Ehrenfried T, Guerraz M, Thilo KV, Yardley L, Gresty MA (2003) Posture and mental task performance when viewing a moving visual field. Brain Res Cogn Brain Res 17:140–153

    PubMed  Google Scholar 

  • Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–433

    PubMed  CAS  Google Scholar 

  • Ernst MO, Bulthoff HH (2004) Merging the senses into a robust percept. Trends Cogn Sci 8:162–169

    PubMed  Google Scholar 

  • Faugloire E, Bonnet CT, Riley MA, Bardy BG, Stoffregen TA (2007) Motion sickness, body movement, and claustrophobia during passive restraint. Exp Brain Res 177:520–532

    PubMed  Google Scholar 

  • Fourre B, Isableu B, Bernardin D, Gueguen M, Giraudet G, Vuillerme N, Pagano C, Amorim MA (2009) The role of body centre of mass on haptic subjective vertical. Neurosci Lett 465:230–234

    PubMed  CAS  Google Scholar 

  • Gandevia SC, Smith JL, Crawford M, Proske U, Taylor JL (2006) Motor commands contribute to human position sense. J Physiol 571:703–710

    PubMed  CAS  Google Scholar 

  • Garrett SR, Pagano C, Austin G, Turvey MT (1998) Spatial and physical frames of reference in positioning a limb. Percept Psychophys 60:1206–1215

    PubMed  CAS  Google Scholar 

  • Gooey K, Bradfield O, Talbot J, Morgan DL, Proske U (2000) Effects of body orientation, load and vibration on sensing position and movement at the human elbow joint. Exp Brain Res 133:340–348

    PubMed  CAS  Google Scholar 

  • Guerraz M, Gianna CC, Burchill PM, Gresty MA, Bronstein AM (2001a) Effect of visual surrounding motion on body sway in a three-dimensional environment. Percept Psychophys 63:47–58

    PubMed  CAS  Google Scholar 

  • Guerraz M, Thilo KV, Bronstein AM, Gresty MA (2001b) Influence of action and expectation on visual control of posture. Brain Res Cogn Brain Res 11:259–266

    PubMed  CAS  Google Scholar 

  • Hillis JM, Ernst MO, Banks MS, Landy MS (2002) Combining sensory information: mandatory fusion within, but not between, senses. Science 298:1627–1630

    PubMed  CAS  Google Scholar 

  • Horstmann GA, Dietz V (1990) A basic posture control mechanism: the stabilization of the centre of gravity. Electroencephalogr Clin Neurophysiol 76:165–176

    PubMed  CAS  Google Scholar 

  • Isableu B, Vuillerme N (2006) Differential integration of kinaesthetic signals to postural control. Exp Brain Res 174:763–768

    PubMed  Google Scholar 

  • Isableu B, Ohlmann T, Cremieux J, Amblard B (1997) Selection of spatial frame of reference and postural control variability. Exp Brain Res 114:584–589

    PubMed  CAS  Google Scholar 

  • Isableu B, Ohlmann T, Cremieux J, Amblard B (2003) Differential approach to strategies of segmental stabilisation in postural control. Exp Brain Res 150:208–221

    PubMed  Google Scholar 

  • Isableu B, Rezzoug N, Mallet G, Bernardin D, Gorce P, Pagano CC (2009) Velocity-dependent changes of rotational axes in the non-visual control of unconstrained 3-D arm motions. Neuroscience 164:1632–1647

    PubMed  CAS  Google Scholar 

  • Isableu B, Ohlmann T, Cremieux J, Vuillerme N, Amblard B, Gresty MA (2010) Individual differences in the ability to identify, select and use appropriate frames of reference for perceptuo-motor control. Neuroscience 169:1199–1215

    PubMed  CAS  Google Scholar 

  • Kavounoudias A, Roll R, Roll JP (1998) The plantar sole is a dynamometric map for human balance control. Neuroreport 9:3247–3252

    PubMed  CAS  Google Scholar 

  • Kavounoudias A, Roll R, Roll JP (2001) Foot sole and ankle muscle inputs contribute jointly to human erect posture regulation. J Physiol 532:869–878

    PubMed  CAS  Google Scholar 

  • Keshner EA, Dhaher Y (2008) Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects. Gait Posture 28:127–134

    PubMed  CAS  Google Scholar 

  • Keshner EA, Kenyon RV (2000) The influence of an immersive virtual environment on the segmental organization of postural stabilizing responses. J Vestib Res 10:207–219

    PubMed  CAS  Google Scholar 

  • Keshner EA, Kenyon RV, Dhaher Y (2004) Postural research and rehabilitation in an immersive virtual environment. Conf Proc IEEE Eng Med Biol Soc 7:4862–4865

    PubMed  CAS  Google Scholar 

  • Kiemel T, Oie KS, Jeka JJ (2002) Multisensory fusion and the stochastic structure of postural sway. Biol Cybern 87:262–277

    PubMed  Google Scholar 

  • Kluzik J, Horak FB, Peterka RJ (2005) Differences in preferred reference frames for postural orientation shown by after-effects of stance on an inclined surface. Exp Brain Res 162:474–489

    PubMed  Google Scholar 

  • Kluzik J, Peterka RJ, Horak FB (2007) Adaptation of postural orientation to changes in surface inclination. Exp Brain Res 178:1–17

    PubMed  Google Scholar 

  • Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci 27:712–719

    PubMed  CAS  Google Scholar 

  • Kording KP, Wolpert DM (2004a) Bayesian integration in sensorimotor learning. Nature 427:244–247

    PubMed  Google Scholar 

  • Kording KP, Wolpert DM (2004b) The loss function of sensorimotor learning. Proc Natl Acad Sci USA 101:9839–9842

    PubMed  Google Scholar 

  • Lacour M, Barthelemy J, Borel L, Magnan J, Xerri C, Chays A, Ouaknine M (1997) Sensory strategies in human postural control before and after unilateral vestibular neurotomy. Exp Brain Res 115:300–310

    PubMed  CAS  Google Scholar 

  • Lambrey S, Berthoz A (2003) Combination of conflicting visual and non-visual information for estimating actively performed body turns in virtual reality. Int J Psychophysiol 50:101–115

    PubMed  Google Scholar 

  • Ledin T, Fransson PA, Magnusson M (2004) Effects of postural disturbances with fatigued triceps surae muscles or with 20% additional body weight. Gait Posture 19:184–193

    PubMed  Google Scholar 

  • Massion J (1994) Postural control system. Curr Opin Neurobiol 4:877–887

    PubMed  CAS  Google Scholar 

  • Massion J, AB Assaiante, Christine ML, Vernazza S (1998) Body orientation and control of coordinated movements in microgravity. Brain Res Rev 28:83–91

    PubMed  CAS  Google Scholar 

  • Maurer C, Peterka RJ (2005) A new interpretation of spontaneous sway measures based on a simple model of human postural control. J Neurophysiol 93:189–200

    PubMed  Google Scholar 

  • Mergner T, Schweigart G, Maurer C, Blumle A (2005) Human postural responses to motion of real and virtual visual environments under different support base conditions. Exp Brain Res 167:535–556

    PubMed  CAS  Google Scholar 

  • Njiokiktjien CJ, van Parys JA (1976) Romberg’s sign expressed in a quotient. II. Pathology. Agressologie 17:19–23

    PubMed  CAS  Google Scholar 

  • Ohlmann T (1998) La perception de la verticale. Variabilité interindividuelle dans la dépendance à l’égard des référentiels spatiaux. Université de Paris VIII. Thèse d’état, pp 1–428. Ref type: thesis/dissertation

  • Ohlmann T, Marendaz C (1991) Vicarious processes involved in selection/control of frames of reference and spatial aspects of field dependence-independence. In: Wapner S, Demick J (eds) Field dependence-independence: cognitive style across the life span. L. E. A. Publisher Hillsdale, NJ, pp 105–129

    Google Scholar 

  • Oie KS, Kiemel T, Jeka JJ (2002) Multisensory fusion: simultaneous re-weighting of vision and touch for the control of human posture. Brain Res Cogn Brain Res 14:164–176

    PubMed  Google Scholar 

  • Pagano CC, Turvey MT (1995) The inertia tensor as a basis for the perception of limb orientation. J Exp Psychol Hum Percept Perform 21:1070–1087

    PubMed  CAS  Google Scholar 

  • Paillard J (1991) Motor and representational framing in space. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 163–182

    Google Scholar 

  • Paulus WM, Straube A, Brandt T (1984) Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain 107:1143–1163

    PubMed  Google Scholar 

  • Peterka RJ, Loughlin PJ (2004) Dynamic regulation of sensorimotor integration in human postural control. J Neurophysiol 91:410–423

    PubMed  Google Scholar 

  • Pinsault N, Vuillerme N (2009) Test-retest reliability of centre of foot pressure measures to assess postural control during unperturbed stance. Med Eng Phys 31:276–286

    PubMed  Google Scholar 

  • Priplata AA, Niemi JB, Harry JD, Lipsitz LA, Collins JJ (2003) Vibrating insoles and balance control in elderly people. Lancet 362:1123–1124

    PubMed  Google Scholar 

  • Proske U, Gandevia SC (2009) The kinaesthetic senses. J Physiol 587:4139–4146

    PubMed  CAS  Google Scholar 

  • Redfern MS, Yardley L, Bronstein AM (2001) Visual influences on balance. J Anxiety Disord 15:81–94

    PubMed  CAS  Google Scholar 

  • Reuchlin M (1978) Processus vicariants et différences individuelles. J Psychol 2:133–145

    Google Scholar 

  • Reynolds RF (2010) The ability to voluntarily control sway reflects the difficulty of the standing task. Gait Posture 31:78–81

    PubMed  Google Scholar 

  • Riccio GE, Martin EJ, Stoffregen TA (1992) The role of balance dynamics in the active perception of orientation. J Exp Psychol Hum Percept Perform 18:624–644

    PubMed  CAS  Google Scholar 

  • Rietdyk S, McGlothlin JD, Knezovich MJ (2005) Work experience mitigated age-related differences in balance and mobility during surface accommodation. Clin Biomech 20:1085–1093

    Google Scholar 

  • Riley MA, Wong S, Mitra S, Turvey MT (1997) Common effects of touch and vision on postural parameters. Exp Brain Res 117:165–170

    PubMed  CAS  Google Scholar 

  • Roll JP, Roll R (1988) From eye to foot: a proprioceptive chain involved in postural control. In: Amblard B, Berthoz A, Clarac F (eds) Posture and gait: development, adaptation and modulation. Elsevier, Amsterdam, pp 155–164

    Google Scholar 

  • Rougier P (2001) A forward leaning posture affects more the amplitudes of the centre of pressure displacements than those of the centre of gravity. Ann Readapt Med Phys 44:533–541

    PubMed  CAS  Google Scholar 

  • Rougier P, Burdet C, Farenc I, Berger L (2001) Backward and forward leaning postures modelled by an fBm framework. Neurosci Res 41:41–50

    PubMed  CAS  Google Scholar 

  • Schieppati M, Hugon M, Grasso M, Nardone A, Galante M (1994) The limits of equilibrium in young and elderly normal subjects and in parkinsonians. Electroencephalogr Clin Neurophysiol 93:286–298

    PubMed  CAS  Google Scholar 

  • Simeonov P, Hsiao H (2001) Height, surface firmness, and visual reference effects on balance control. Inj Prev 7(Suppl 1):i50–i53

    PubMed  Google Scholar 

  • Sinha T, Maki BE (1996) Effect of forward lean on postural ankle dynamics. IEEE Trans Rehabil Eng 4:348–359

    PubMed  CAS  Google Scholar 

  • Slaboda JC, Barton JE, Maitin IB, Keshner EA (2009) Visual field dependence influences balance in patients with stroke. Conf Proc IEEE Eng Med Biol Soc 2009:1147–1150

    PubMed  CAS  Google Scholar 

  • Smith JL, Crawford M, Proske U, Taylor JL, Gandevia SC (2009) Signals of motor command bias joint position sense in the presence of feedback from proprioceptors. J Appl Physiol 106:950–958

    PubMed  Google Scholar 

  • Stoffregen TA, Riccio GE (1988) An ecological theory of orientation and the vestibular system. Psychol Rev 95:3–14

    PubMed  CAS  Google Scholar 

  • Stoffregen TA, Smart LJ Jr (1998) Postural instability precedes motion sickness. Brain Res Bull 47:437–448

    PubMed  CAS  Google Scholar 

  • Stoffregen TA, Hettinger LJ, Haas MW, Roe MM, Smart LJ (2000a) Postural instability and motion sickness in a fixed-based flight simulator. Hum Factors 42:458–469

    PubMed  CAS  Google Scholar 

  • Stoffregen TA, Pagulayan RJ, Bardy BG, Hettinger LJ (2000b) Modulating postural control to facilitate visual performance. Hum Mov Sci 19:203–220

    Google Scholar 

  • Streepey JW, Kenyon RV, Keshner EA (2007) Visual motion combined with base of support width reveals variable field dependency in healthy young adults. Exp Brain Res 176:182–187

    PubMed  Google Scholar 

  • Suprak DN, Osternig LR, Van DP, Karduna AR (2006) Shoulder joint position sense improves with elevation angle in a novel, unconstrained task. J Orthop Res 24:559–568

    PubMed  Google Scholar 

  • Suprak DN, Osternig LR, Van DP, Karduna AR (2007) Shoulder joint position sense improves with external load. J Mot Behav 39:517–525

    PubMed  Google Scholar 

  • Thilo KV, Gresty MA (2002) Visual motion stimulation, but not visually induced perception of self-motion, biases the perceived direction of verticality. Brain Res Cogn Brain Res 14:258–263

    PubMed  Google Scholar 

  • Vaillant J, Vuillerme N, Janvey A, Louis F, Braujou R, Juvin R, Nougier V (2008) Effect of manipulation of the feet and ankles on postural control in elderly adults. Brain Res Bull 75:18–22

    PubMed  Google Scholar 

  • van Parys JA, Njiokiktjien CJ (1976) Romberg’s sign expressed in a quotient. Agressologie 17:95–99

    PubMed  Google Scholar 

  • Vuillerme N, Pinsault N (2007) Re-weighting of somatosensory inputs from the foot and the ankle for controlling posture during quiet standing following trunk extensor muscles fatigue. Exp Brain Res 183:323–327

    PubMed  Google Scholar 

  • Vuillerme N, Burdet C, Isableu B, Demetz S (2006) The magnitude of the effect of calf muscles fatigue on postural control during bipedal quiet standing with vision depends on the eye-visual target distance. Gait Posture 24:169–172

    PubMed  Google Scholar 

  • Vuillerme N, Chenu O, Demongeot J, Payan Y (2007) Controlling posture using a plantar pressure-based, tongue-placed tactile biofeedback system. Exp Brain Res 179:409–414

    PubMed  Google Scholar 

  • Walsh LD, Gandevia SC, Taylor JL (2010) Illusory movements of a phantom hand grade with the duration and magnitude of motor commands. J Physiol 588:1269–1280

    PubMed  CAS  Google Scholar 

  • Witkin HA, Wapner S (1950) Large oscillating visual displays increase postural instability. Am J Psychol 63:385–392

    PubMed  Google Scholar 

  • Zoccolotti P, Antonucci G, Goodenough DR, Pizzamiglio L, Spinelli D (1992) The role of frame size on vertical and horizontal observers in the rod- and-frame illusion. Acta Psychol 79:171–1873

    CAS  Google Scholar 

  • Zoccolotti P, Antonucci G, Daini R, Martelli ML, Spinelli D (1997) Frame-of-reference and hierarchical-organisation effects in the rod-and-frame illusion. Perception 26:1485–1494

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the students at the University Paris-Sud, UFR STAPS who volunteered to serve as participants in this study. This research was supported by a grant from the Centre National de la Recherche Scientifique, île de France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice Isableu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isableu, B., Fourre, B., Vuillerme, N. et al. Differential integration of visual and kinaesthetic signals to upright stance. Exp Brain Res 212, 33–46 (2011). https://doi.org/10.1007/s00221-011-2693-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2693-0

Keywords

Navigation