Skip to main content
Log in

Electroencephalography (EEG)-based neurofeedback training for brain–computer interface (BCI)

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

An Erratum to this article was published on 12 February 2014

Abstract

Electroencephalography has become a popular tool in basic brain research, but in recent years, several practical limitations have been highlighted. Some of the drawbacks pertain to the offline analyses of the neural signal that prevent the subjects from engaging in real-time error correction during learning. Other limitations include the complex nature of the visual stimuli, often inducing fatigue and introducing considerable delays, possibly interfering with spontaneous performance. By replacing the complex external visual input with internally driven motor imagery, we can overcome some delay problems, at the expense of losing the ability to precisely parameterize features of the input stimulus. To address these issues, we here introduce a nontrivial modification to brain–computer Interfaces (BCI). We combine the fast signal processing of motor imagery with the ability to parameterize external visual feedback in the context of a very simple control task: attempting to intentionally control the direction of an external cursor on command. By engaging the subject in motor imagery while providing real-time visual feedback on their instantaneous performance, we can take advantage of positive features present in both externally- and internally driven learning. We further use a classifier that automatically selects the cortical activation features that most likely maximize the performance accuracy. Under this closed loop coadaptation system, we saw a progression of the cortical activation that started in sensorymotor areas, when at chance performance motor imagery was explicitly used, migrated to BA6 under deliberate control and ended in the more frontal regions of prefrontal cortex, when at maximal performance accuracy, the subjects reportedly developed spontaneous mental control of the instructed direction. We discuss our results in light of possible applications of this simple BCI paradigm to study various cognitive phenomena involving the deliberate control of a directional signal in decision making tasks performed with intent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Attias H (1999) Inferring parameters and structure of latent variables models by variation Bayes. In: Proceedings of 15th conference on uncertainty in artificial intelligence, pp 21–30

  • Balakrishnan S, Madigam D (2008) Algorithms for sparse linear classifiers in the massive data setting. J Mach Learn Res 9:313–337

    Google Scholar 

  • Batenburg P, O’hagan A, Veenstra R (1994) Bayesian discovery sampling in financial auditing: a hierarchical prior model for substantive test sample sizes. The Statistician 43(1):99–110

    Article  Google Scholar 

  • Choi K (2012) Control of a vehicle with EEG signals in real-time and system evaluation. Eur J Appl Physiol 112(2):755–766

    Article  PubMed  Google Scholar 

  • Congedo M, Lubar J, Joffe D (2004) Low-resolution electromagnetic tomography neurofeedback. IEEE Trans Neural Syst Rehabil Eng 12(4):387–397

    Article  PubMed  Google Scholar 

  • Edin F, Klingberg T, Johansson P, McNab F, Tegner J, Compte A (2009) Mechanism for top-down control of working memory capacity. PNAS 106:6802–6807

    Article  CAS  PubMed  Google Scholar 

  • Fried I, Katz A, McCarthy G, Sass K, Williamson P, Spencer S, Spencer D (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11:3656–3666

    CAS  PubMed  Google Scholar 

  • Grave de Peralta Menendez R, Andino S, Morand S, Michel CM, Landis T (2000) Imaging the electrical activity of the brain: ELECTRA. Hum Brain Mapp 9:1–12

    Article  CAS  PubMed  Google Scholar 

  • Grave de Peralta Menendez R, Andino S, Perez L, Ferrez P, Millan J (2005) Non-invasive estimation of local field potentials for neuroprosthesis control. Cogn Process 6:59–64

    Article  Google Scholar 

  • He Z, Cichocki A, Xie S, Choi K (2010) Detecting the number of clusters in n-way probabilistic clustering. IEEE Trans Pattern Anal Mach Intell 32(11):2006–2021

    Article  PubMed  Google Scholar 

  • Kamousi B, Liu Z, He B (2005) Classification of motor imagery tasks for brain–computer interface applications by means of two equivalent dipoles analysis. IEEE Trans Neural Syst Rehabil Eng 13(2):166–171

    Article  PubMed  Google Scholar 

  • Krishnapuran B, Carin L, Figueiredo M, Hartemink A (2005) Sparse multinomial logistic regression: fast algorithms and generalization bounds. IEEE Trans Pattern Anal Mach Intell 27(6):957–968

    Article  Google Scholar 

  • Li Y, Kambara H, Koike Y, Sugiyama M (2010) Application of covariate shift adaptation techniques in brain–computer interfaces. IEEE Trans Biomed Eng 57(6):1318–1324

    Article  PubMed  Google Scholar 

  • Lim C, Lee T, Guan C, Fung D, Cheung Y, Teng S, Zhang H, Krishnan K (2010) Effectiveness of a brain–computer interface based programme for the treatment of ADHD: a pilot study. Psychopharmacol Bull 43(1):73–82

    PubMed  Google Scholar 

  • Liu T, Shi J, Zhao D, Yang J (2008) The relationship between EEG band power, cognitive processing and intelligence in school-age children. Psychol Sci Q 50:259–268

    Google Scholar 

  • Maunsell J, Gibson J (1992) Visual response latencies in striate cortex of the macaque monkey. J Neurophysiol 68(4):1332–1344

    CAS  PubMed  Google Scholar 

  • Middendorf M, McMillan G, Galhoun G, Jones K (2000) Brain–computer interfaces based on the steady-state visual evoked response. IEEE Trans Neural Syst Rehabil Eng 8(2):211–214

    Article  CAS  Google Scholar 

  • Neal R (1996) Bayesian learning for neural networks. Springer, New York

    Book  Google Scholar 

  • Noirhomme Q, Kitnew R, Macq B (2008) Single-trial EEG source reconstruction for brain computer interface. IEEE Trans Biomed Eng 55(5):1592–1601

    Article  PubMed  Google Scholar 

  • Nunez P (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, Oxford

    Google Scholar 

  • Nunez P, Silberstein R (2000) On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense? Brain Topogr 13(2):79–96

    Article  CAS  PubMed  Google Scholar 

  • Ojakangas C, Shaikhouni A, Friehs G, Caplan A, Serruya M, Saleh M, Morris D, Donoghue J (2006) Decoding movement intent from human premotor cortex neurons for neural prosthetic applications. J Clin Neurophysiol 23(6):577–584

    Article  PubMed Central  PubMed  Google Scholar 

  • Qin L, Ding L, He B (2004) Motor imagery classification by means of source analysis for brain-computer interface applications. J Neural Eng 1:135–141

    Article  PubMed  Google Scholar 

  • Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446

    Article  CAS  PubMed  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Sato M (2001) Online model selection based on the variational Bayes. Neural Comput 13:1649–1681

    Article  Google Scholar 

  • Sato M, Yoshioka T, Kajihara S, Toyama K, Goda N, Doya K, Kawato M (2004) Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage 23:806–826

    Article  PubMed  Google Scholar 

  • Serby H, Yom-Tov E, Inbar G (2005) An improved P300-based brain-computer interface. IEEE Trans Rehabil Eng 13:89–98

    Article  Google Scholar 

  • Shevade S, Keerthi S (2003) A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19(17):2246–2253

    Article  CAS  PubMed  Google Scholar 

  • Stomrud E, Hansseon O, Minthon L, Blennow K, Rosen I (2010) Slowing of EEG correlates with CSF biomarkers and reduced cognitive speed in elderly with normal cognition over 4 years. Neurobiol Aging 31(2):215–223

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang R, Gao X, Hong B, Gao S (2006) A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14(2):234–240

    Article  CAS  PubMed  Google Scholar 

  • Wolpaw J, Birmbaumer N, McFaland D, Pfurtscheller G, Vaughan T (2002) Brain computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Elizabeth B. Torres for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyuwan Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 5583 kb)

Supplementary material 2 (AVI 4013 kb)

Supplementary material 3 (AVI 9959 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, K. Electroencephalography (EEG)-based neurofeedback training for brain–computer interface (BCI). Exp Brain Res 231, 351–365 (2013). https://doi.org/10.1007/s00221-013-3699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3699-6

Keywords

Navigation