Skip to main content
Log in

Online binary decision decoding using functional near-infrared spectroscopy for the development of brain–computer interface

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In this paper, a functional near-infrared spectroscopy (fNIRS)-based online binary decision decoding framework is developed. Fourteen healthy subjects are asked to mentally make “yes” or “no” decisions in answers to the given questions. For obtaining “yes” decoding, the subjects are asked to perform a mental task that causes a cognitive load on the prefrontal cortex, while for making “no” decoding, they are asked to relax. Signals from the prefrontal cortex are collected using continuous-wave near-infrared spectroscopy. It is observed and verified, using the linear discriminant analysis (LDA) and the support vector machine (SVM) classifications, that the cortical hemodynamic responses for making a “yes” decision are distinguishable from those for making a “no” decision. Using mean values of the changes in the concentration of hemoglobin as features, binary decisions are classified into two classes, “yes” and “no,” with an average classification accuracy of 74.28 % using LDA and 82.14 % using SVM. These results demonstrate and suggest the feasibility of fNIRS for a brain–computer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bauernfeind G, Leeb R, Wriessnegger SC, Pfurtscheller G (2008) Development, set-up and first results for a one-channel near-infrared spectroscopy system. Biomed Tech 53:36–43

    Article  CAS  Google Scholar 

  • Biallas M, Trajkovic I, Haensse D, Marcar V, Wolf M (2012) Reproducibility and sensitivity of detecting brain activity by simultaneous electroencephalography and near-infrared spectroscopy. Exp Brain Res 222:255–264

    Article  PubMed  Google Scholar 

  • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:1–27

    Article  Google Scholar 

  • Coyle SM, Ward TE, Markham CM (2007) Brain–computer interface using a simplified functional near-infrared spectroscopy system. J Neural Eng 4:219–226

    Article  PubMed  Google Scholar 

  • Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyat J (1988) Estimation of optical path length through tissue from direct time of flight measurement. Phys Med Biol 33:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Muller KR, Blankertz B (2012) Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage 59:519–529

    Article  PubMed  Google Scholar 

  • Frederick BD, Nickerson LD, Tong Y (2012) Physiological denoising of BOLD fMRI data using regressor interpolation at progressive time delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS). NeuroImage 60:1913–1923

    Article  PubMed Central  PubMed  Google Scholar 

  • Gagnon L, Yucel MA, Dehaes M, Cooper RJ, Perdue KL, Selb J, Huppert TJ, Hoge RD, Boas DA (2012) Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS–fMRI measurements. NeuroImage 59:3933–3940

    Article  PubMed Central  PubMed  Google Scholar 

  • Gratton G, Brumback CR, Gordon BA, Pearson MA, Low KA, Fabiani M (2006) Effects of measurement method, wavelength, and source-detector distance on the fast optical signal. NeuroImage 32:1576–1590

    Article  PubMed  Google Scholar 

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485:372–375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoshi Y (2007) Functional near-infrared spectroscopy: current status and future prospects. J Biomed Opt 12. doi:10.1117/1.2804911

  • Hu X-S, Hong K-S, Ge SS, Jeong M-Y (2010) Kalman estimator- and general linear model-based on-line brain activation mapping by near-infrared spectroscopy. Biomed Eng Online 9:1–15

    Article  Google Scholar 

  • Hu X-S, Hong K-S, Ge SS (2011) Recognition of stimulus-evoked neuronal optical response by identifying chaos levels of near-infrared spectroscopy time series. Neurosci Lett 504:115–120

    Article  CAS  PubMed  Google Scholar 

  • Hu X-S, Hong K-S, Ge SS (2012) fNIRS-based online deception decoding. J Neural Eng 9. doi:10.1088/1741-2560/9/2/026012

  • Hu X-S, Hong K-S, Ge SS (2013) Reduction of trial-to-trial variations in functional near-infrared spectroscopy signals by accounting for resting-state functional connectivity. J Biomed Opt 18. doi:10.1117/1.JBO.18.1.017003

  • Jobsis FF (1977) Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267

    Article  CAS  PubMed  Google Scholar 

  • Kamran MA, Hong K-S (2013) Linear parameter-varying model and adaptive filtering technique for detecting neuronal activities: an fNIRS study. J Neural Eng 10. doi:10.1088/1741-2560/10/5/056002

  • Khoa TQD, Nakagawa M (2008) Functional near-infrared spectroscope for cognition brain tasks by wavelets analysis and neural networks. Int J Biol Life Sci 4:28–33

    Google Scholar 

  • Li J, Zhang L (2012) Active training paradigm for motor imagery BCI. Exp Brain Res 219:245–254

    Article  PubMed  Google Scholar 

  • Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain–computer interfaces. J Neural Eng 4. doi:10.1088/1741-2560/4/2/R01

  • Luu S, Chau T (2009) Decoding subjective preferences from single-trial near-infrared spectroscopy signals. J Neural Eng 6. doi:10.1088/1741-2560/6/1/016003

  • McCormick PW, Stewart M, Lewis G, Dujovny M, Ausman JI (1992) Intracerebral penetration of infrared light: technical note. J Neurosurg 76:315–318

    Article  CAS  PubMed  Google Scholar 

  • Naito M, Michioka Y, Ozawa K, Ito Y, Kiguchi M, Kanazaw T (2007) A communication means for totally locked-in ALS patients based on changes in cerebral blood volume measured with near-infrared light. IEICE Trans Inform Syst 90:1028–1037

    Article  Google Scholar 

  • Naseer N, Hong K-S (2013) Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain–computer interface. Neurosci Lett 553:84–89

    Article  CAS  PubMed  Google Scholar 

  • Nunez-Pena MI, Suarez-Pellicioni M (2012) Processing false solutions in additions: differences between high- and lower-skilled arithmetic problem-solvers. Exp Brain Res 218:655–663

    Article  PubMed  Google Scholar 

  • Ogata H, Mukai T, Yagi T (2007) A study on the frontal cortex in cognitive tasks using near-infrared spectroscopy. Proceeding of IEEE engineering in medicine and biology society (Lyon, France), pp 4731–4734

  • Okada E, Firbank M, Schweiger M, Arridge SR, Cope M, Delpy DT (1997) Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head. Appl Opt 36:21–31

    Article  CAS  PubMed  Google Scholar 

  • Philip BA, Rao N, Donoghue JP (2013) Simultaneous reconstruction of continuous hand movements from primary motor and posterior parietal cortex. Exp Brain Res 225:361–375

    Article  PubMed  Google Scholar 

  • Power SD, Falk TH, Chau T (2009) Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J Neural Eng 7. doi:10.1088/1741-2560/7/2/026002

  • Salvaris M, Sepulveda F (2010) Classification effects of real and imaginary movement selective attention tasks on a P300-based brain–computer interface. J Neural Eng 7. doi:10.1088/1741-2560/7/5/056004

  • Santosa H, Hong MJ, Kim S-P, Hong K-S (2013) Noise reduction in functional near-infrared spectroscopy signals by independent component analysis. Rev Sci Instrum 84. doi:10.1063/1.4812785

  • Sitaram R, Zhang H, Guan C, Thulasidas M, Hoshi Y, Ishikawa A, Shimizu K, Birbaumer N (2007) Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. NeuroImage 34:1416–1427

    Article  PubMed  Google Scholar 

  • Sorger B, Dahmen B, Reithler J, Gosseries O, Maudoux A, Laureys S, Goebel R (2009) Another kind of ‘BOLD response’: answering multiple-choice questions via online decoded single-trial brain signals. Prog Brain Res 177:275–292

    Article  PubMed  Google Scholar 

  • Szabo A, Gauvin L (1992) Reactivity to written mental arithmetic: effects of exercise lay-off and habituation. Physiol Behav 51:501–506

    Article  CAS  PubMed  Google Scholar 

  • Tranel D, Bechara A, Denburg NL (2002) Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex 38:589–612

    Article  PubMed  Google Scholar 

  • Utsugi K, Obata A, Sato H, Katsura T, Sagara K, Maki A, Koizumi H (2007) Development of an optical brain–machine interface. Proceeding of IEEE engineering in medicine and biology society (Lyon, France), pp 5338–5341

  • van der Zee P, Cope M, Arridge SR, Essenpreis M, Potter LA, Edwards AD, Wyatt JS, McCormick DC, Roth SC, Reynolds EO, Delpy DT (1992) Experimentally measured optical path lengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing. Adv Exp Biol 316:143–153

    Article  Google Scholar 

  • Volz KG, Schubotz RI, von Cramon DY (2006) Decision-making and the frontal lobes. Curr Opin Neurol 19:401–406

    Article  PubMed  Google Scholar 

  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain–computer interfaces for communication and control. Clin Neurophysiol 113:767–791

    Article  PubMed  Google Scholar 

  • Wylie GR, Graber HL, Voelbel GT, Kohl AD, DeLuca J, Pei JL, Xu Y, Barbour RL (2009) Using co-variations in the Hb signal to detect visual activation: a near infrared spectroscopic imaging study. NeuroImage 47:473–481

    Article  PubMed  Google Scholar 

  • Yang Y, Raine A (2009) Prefrontal structure and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res 174:81–88

    Article  PubMed Central  PubMed  Google Scholar 

  • Yarkoni T, Braver TS (2010) Cognitive neuroscience approaches to individual differences in working memory and executive control: conceptual and methodological issues. In: Gruszka A, Matthews G, Szymuyra B (eds) Handbook of individual differences in cognition: attention, memory and executive control. Springer, New York, pp 87–107

    Chapter  Google Scholar 

  • Zhang Q, Brown EN, Strangman GE (2007) Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study, J Biomed Opt 12. doi:10.1117/1.2804706

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology, Republic of Korea (Grant No. MEST-2012-R1A2A2A01046411).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keum-Shik Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naseer, N., Hong, M.J. & Hong, KS. Online binary decision decoding using functional near-infrared spectroscopy for the development of brain–computer interface. Exp Brain Res 232, 555–564 (2014). https://doi.org/10.1007/s00221-013-3764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-013-3764-1

Keywords

Navigation