Skip to main content
Log in

Memory load effect in auditory–verbal short-term memory task: EEG fractal and spectral analysis

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The objective of this preliminary study was to quantify changes in complexity of EEG using fractal dimension (FD) alongside linear methods of spectral power, event-related spectral perturbations, coherence, and source localization of EEG generators for theta (4–7 Hz), alpha (8–12 Hz), and beta (13–23 Hz) frequency bands due to a memory load effect in an auditory–verbal short-term memory (AVSTM) task for words. We examined 20 healthy individuals using the Sternberg’s paradigm with increasing memory load (three, five, and seven words). The stimuli were four-letter words. Artifact-free 5-s EEG segments during retention period were analyzed. The most significant finding was the increase in FD with the increase in memory load in temporal regions T3 and T4, and in parietal region Pz, while decrease in FD with increase in memory load was registered in frontal midline region Fz. Results point to increase in frontal midline (Fz) theta spectral power, decrease in alpha spectral power in parietal region—Pz, and increase in beta spectral power in T3 and T4 region with increase in memory load. Decrease in theta coherence within right hemisphere due to memory load was obtained. Alpha coherence increased in posterior regions with anterior decrease. Beta coherence increased in fronto–temporal regions. Source localization delineated theta activity increase in frontal midline region, alpha decrease in superior parietal region, and beta increase in superior temporal gyrus with increase in memory load. In conclusion, FD as a nonlinear measure may serve as a sensitive index for quantifying dynamical changes in EEG signals during AVSTM tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aftanas LI, Lotova NV, Koshkarov VI, Popov SA (1998) Non-linear dynamical coupling between different brain areas during evoked emotions: an EEG investigation. Biol Psychol 48:121–138

    Article  CAS  PubMed  Google Scholar 

  • Ahmadi K, Ahmadlou M, Rezazade M, Azad-Marzabadi E, Sajedi F (2013) Brain activity of women is more fractal than men. Neurosci Lett 535:7–11

    Article  CAS  PubMed  Google Scholar 

  • Ahmadlou M, Adeli H, Adeli A (2010) Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J Clin Neurophysiol 27(5):328–333

    Article  PubMed  Google Scholar 

  • Ahmadlou M, Adeli H, Adeli A (2011) Fractality and a wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Alzheimer Dis Assoc Disord 25(1):85–92

    Article  PubMed  Google Scholar 

  • Babiloni C, Marzano N, Iacoboni M et al (2010) Resting state cortical rhythms in athletes: a high-resolution EEG study. Brain Res Bull 81:149–156

    Article  PubMed  Google Scholar 

  • Babloyantz A, Salazar JM, Nicolis C (1985) Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett 3:152–156

    Article  Google Scholar 

  • Bashivan P, Bidelman GM, Yeasin M (2014) Spectrotemporal dynamics of the EEG during working memory encoding and maintenance predicts individual behavioral capacity. Eur J Neurosci 40(12):3774–3784

    Article  PubMed  Google Scholar 

  • Berger J, Marković M, Biro M (1995) Diagnostic manual for VITI—standardized and adapted Wecsler intelligence scale. Beograd: Društvo psihologa Srbije [Belgrade: Serbian Psychological Society]

  • Catarino A, Churches O, Baron-Cohen S, Andrade A, Ring R (2011) Atypical EEG complexity in autism spectrum conditions: a multiscale entropy analysis. Clin Neurophysiol 122:2375–2383

    Article  PubMed  Google Scholar 

  • Chuckravanen D (2014) Approximate entropy as a measure of cognitive fatigue: an eeg pilot study. Int J Emerg Trends Sci Technol 1(7):1036–1042

    Google Scholar 

  • Costa M, Goldberger AL, Peng CK (2005) Multiscale entropy analysis of biological signals. Phys Rev E 71:021906. doi:10.1103/PhysRevE.71.021906

    Article  Google Scholar 

  • Cukic M, Oommen J, Mutavdzic D, Jorgovanovic N, Ljubisavljevic RM (2013) The effect of single-pulse transcranial magnetic stimulation and peripheral nerve stimulation on complexity of EMG signal: fractal analysis. Exp Brain Res 228(1):97–104

    Article  CAS  PubMed  Google Scholar 

  • Dastgheib ZA, Lithgow B, Moussavi Z (2011) Application of fractal dimension on vestibular response signals for diagnosis of Parkinson’s disease. Conf Proc IEEE Eng Med Biol Soc 2011:7892–7895. doi:10.1109/IEMBS.2011.6091946

    CAS  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Donkin C, Nosofsky RM (2012) The structure of short-term memory scanning: an investigation using response time distribution models. Psychon Bull Rev 19:363–394. doi:10.3758/s13423-012-0236-8

    Article  PubMed  Google Scholar 

  • Doyle TLA, Dugan EL, Humphries B, Newton RU (2004) Discriminating between elderly and young using a fractal dimension analysis of centre of pressure. Int J Med Sci 1:11–20

    Article  PubMed Central  PubMed  Google Scholar 

  • Eke A, Herman P, Bassingthwaighte J, Raymond G, Percival D, Cannon M et al (2000) Physiological time series: distinguishing fractal noises from motions. Pflügers Arch 439(4):403–415

    Article  CAS  PubMed  Google Scholar 

  • Gitter JA, Cherniecky MJ (1995) Fractal analysis of the electromyographic interference pattern. J Neurosci Methods 58:103–108

    Article  CAS  PubMed  Google Scholar 

  • Gregson RAM, Campbell EA, Gates GR (1992) Cognitive load as a determinant of the dimensionality of the electroencephalogram: a replication study. Biol Psychol 35:165–178

    Article  Google Scholar 

  • Ha TH, Yoon U, Lee KJ, Shin YW, Lee JM, Kim IY, Ha KS, Kim SI, Kwon JS (2005) Fractal dimension of cerebral cortical surface in schizophrenia and obsessive–compulsive disorder. Neurosci Lett 384:172–176

    Article  CAS  PubMed  Google Scholar 

  • Henderson G, Ifeachor E, Hudson N, Goh C, Outram N, Wimalaratna S, Del Percio C, Vecchio F (2006) Development and assessment of methods for detecting dementia using the human electroencephalogram. IEEE Trans Biomed Eng 53(8):1557–1568

    Article  PubMed  Google Scholar 

  • Higuchi T (1988) Approach to an irregular time series on the basis of the fractal theory. Phys D 31(2):277–283

    Article  Google Scholar 

  • Hogan MJ, Kilmartin L, Keane M, Collins P, Staff RT, Kaiser J, Lai R, Upton N (2012) Electrophysiological entropy in younger adults, older controls and older cognitively declined adults. Brain Res 1445:1–10. doi:10.1016/j.brainres.2012.01.027

    Article  CAS  PubMed  Google Scholar 

  • Hsieh LT, Ranganath C (2014) Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage 85(2):721–729

    Article  PubMed  Google Scholar 

  • Itthipuripat S, Wessel RJ (2013) Frontal theta as a signature of successful working memory manipulation. Exp Brain Res 224:255–262

    Article  PubMed Central  PubMed  Google Scholar 

  • Jensen O, Lisman JE (1998) An oscillatory short-term memory buffer model can account for data on the Sternberg task. J Neurosci 18:10688–10699

    CAS  PubMed  Google Scholar 

  • Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186. doi:10.3389/fnhum.2010.00186

    Article  PubMed Central  PubMed  Google Scholar 

  • Jensen O, Tesche CD (2002) Frontal theta activity increases in humans with memory load in a working memory task. Eur J Neurosci 15:1395–1399

    Article  PubMed  Google Scholar 

  • Jonides J, Lewis RL, Nee DE, Lustig CA, Berman MG, Moore KS (2008) The mind and brain of short-term memory. Annu Rev Psychol 59:193–224

    Article  PubMed Central  PubMed  Google Scholar 

  • Kalauzi A, Bojic T, Vuckovic A (2012) Modeling the relationship between Higuchi’s fractal dimension and Fourier spectra of physiological signals. Med Biol Eng Comput 50(7):689–699

    Article  PubMed  Google Scholar 

  • Katz M (1988) Fractals the analysis of waveforms. Comput Biol Med 18(3):145–156

    Article  CAS  PubMed  Google Scholar 

  • Kirillov NO, Dmitry EP (eds.) (2013) Nonlinear physical systems: spectral analysis, stability and bifurcations. Wiley-ISTE. doi: 10.1002/9781118577608. http://www.wiley.com/WileyCDA/WileyTitle/productCd-1848214200.html

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Doppelmayr M, Pachinger T, Russegger H (1997) Event-related desynchronization in the alpha band and the processing of semantic information. Cogn Brain Res 6:83–94

    Article  CAS  Google Scholar 

  • Klimesch W, Doppelmayr M, Stadler W, Pollhuber D, Sauseng P, Rohm D (2001a) Episodic retrieval is reflected by a process specific increase in human electroencephalic theta activity. Neurosci Lett 302:49–52

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Doppelmayr M, Yonelinas A, Kroll NEA, Lazzara M, Rohm D, Gruber W (2001b) Theta synchronization during episodic retrieval: neural correlates of conscious awareness. Cogn Brain Res 12:33–38. doi:10.1016/S0926-6410(01)00024-6

    Article  CAS  Google Scholar 

  • Klonowsky W, Olejarczyk E, Stepien R (2004) Epileptic seizures in economic organism. Phys A 342:701–707

    Article  Google Scholar 

  • Kopp F, Schroger E, Lipka S (2004) Neural networks engaged in short-term memory rehearsal are disrupted by irrelevant speech in human subjects. Neurosci Lett 354:42–45

    Article  CAS  PubMed  Google Scholar 

  • Kronholm E, Virkkala J, Kärki T, Karjalainen P, Lang H, Hämäläinen H (2007) Spectral power and fractal dimension: methodological comparison in a sample of normal sleepers and chronic insomniacs. Sleep Biol Rhythms 5(4):239–250. doi:10.1111/j.1479-8425.2007.00317.x

    Article  Google Scholar 

  • Litt B, Echauz J (2002) Prediction of epileptic seizures. Lancet Neurol 1:22–30

    Article  PubMed  Google Scholar 

  • Liu JZ, Yang Q, Yao B, Brown RW, Yue GH (2005) Linear correlation between fractal dimension of EEG signal and handgrip force. Biol Cybern 93:131–140

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhang C, Zheng C (2010) EEG-based estimation of mental fatigue by using KPCAHMM and complexity parameters. Biomed Signal Process 5(2):124–130. doi:10.1016/j.bspc.2010.01.001

    Article  Google Scholar 

  • Lutzenberger W, Pulvermüller F, Elbert T, Birbaumer N (1995) Visual stimulation alters local 40-Hz responses in humans: an EEG-study. Neurosci Lett 183:39–42

    Article  CAS  PubMed  Google Scholar 

  • Makeig S (1993) Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalogr Clin Neurophysiol 86(4):283–293

    Article  CAS  PubMed  Google Scholar 

  • Mattei TA (2013). The secret is at the crossways: hodotopic organization and nonlinear dynamics of brain neural networks. Behav Brain Sci. 36, 623–624. discussion: 634–659. doi: 10.1017/S0140525X13001386

  • Mattei TA (2014) Unveiling complexity: non-linear and fractal analysis in neuroscience and cognitive psychology. Front Comput Neurosci 8:17. doi:10.3389/fncom.2014.00017

    Article  PubMed Central  PubMed  Google Scholar 

  • Meigal AI, Rissanen S, Tarvainen MP, Karjalainen PA, Iudina-Vassel IA, Airaksinen O, Kankaanpää M (2009) Novel parameters of surface EMG in patients with Parkinson’s disease and healthy young and old controls. J Electromyogr Kinesiol 19(3):206–213. doi:10.1016/j.jelekin.2008.02.008

    Article  Google Scholar 

  • Michels L, Luchinger R, Koenig T, Martin E, Brandeis D (2012) Developmental changes of bold signal correlations with global human eeg power and synchronization during working memory. PLoS ONE 7(7):e39447. doi:10.1371/journal.pone.0039447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molle M, Marshall L, Lutzenberger W, Pietrowsky R, Fehm HL, Born J (1996) Enhanced dynamic complexity in the human EEG during creative thinking. Neurosci Lett 208(1):61–64

    Article  CAS  PubMed  Google Scholar 

  • Molnar M, Boha R, Czigler B, Gaal ZA, Benyovszky M, Rona K, Klausz G (2009) The acute effect of low-dose alcohol on working memory during mental arithmetic: II. Changes of nonlinear and linear EEG-complexity in the theta band, heart rate and electrodermal activity. Int J Psychophysiol 73(2):138–142. doi:10.1016/j.ijpsycho.2009.02.007

    Article  PubMed  Google Scholar 

  • Moran RJ, Campo P, Maestu F, Reilly RB, Dolan RJ, Strange BA (2010) Peak frequency in the theta and alpha bands correlates with human working memory capacity. Front Hum Neurosci 4:200. doi:10.3389/fnhum.2010.00200

    Article  PubMed Central  PubMed  Google Scholar 

  • Nosofsky RM, Little DR, Donkin C, Fific M (2011) Short term memory scanning viewed as exemplar-based categorization. Psychol Rev 188:280–315

    Article  Google Scholar 

  • Okuhata S, Kusanagi T, Kobayashi T (2013) Parietal EEG alpha suppression time of memory retrieval reflects memory load while the alpha power of memory maintenance is a composite of the visual process according to simultaneous and successive Sternberg memory tasks. Neurosci Lett 555:79–84

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychol 9:97–113

    Article  CAS  Google Scholar 

  • Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27(2):341–356

    Article  PubMed  Google Scholar 

  • Palomaki J, Kivikangas M, Alafuzoff A, Hakala T, Krause CM (2012) Brain oscillatory 4–35 Hz EEG responses during an n-back task with complex visual stimuli. Neurosci Lett 516:141–145

    Article  CAS  PubMed  Google Scholar 

  • Postle BR (2006) Working memory as an emergent property of the mind and brain. Neuroscience 139:23–38

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pritchard WS, Duke DW (1995) Measuring ‘‘chaos’’ in the brain: a tutorial review of EEG dimension estimation. Brain Cogn 2:353–397

    Article  Google Scholar 

  • Protzner AB, Valiante TA, Kovacevic N, McCormick C, McAndrews MP (2010) Hippocampal signal complexity in mesial temporal lobe epilepsy: a noisy brain is a healthy brain. Arch Ital Biol 148:289–297

    CAS  PubMed  Google Scholar 

  • Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B, Madsen JR, Lisman JE (2001) Gating of human theta oscillations by a working memory task. J Neurosci 21(9):3175–3183

    CAS  PubMed  Google Scholar 

  • Ramanand P, Sreenivasan R, Nampoori VPN (2003) Complexity of brain dynamics inferred from the sample entropy analysis of electroencephalogram. National Conference on Nonlinear Systems & Dynamics, NCNSD-2003, Indian Institute of Technology, Kharagpur 721302, December 28–30, 205–208

  • Rawle CJ, Miall RC, Praamstra P (2012) Frontoparietal theta activity supports behavioral decisions in movement-target selection. Front Hum Neurosci 6:138. doi:10.3389/fnhum.2012.00138

    Article  PubMed Central  PubMed  Google Scholar 

  • Sammer G (1996) Working-memory load and dimensional complexity of the EEG. Int J Psychophysiol 24:173–182

    Article  CAS  PubMed  Google Scholar 

  • Sammer G (1999) Working memory load and EEG-dynamics as revealed by point correlation dimension analysis. Int J Psychophysiol 34:89–101

    Article  CAS  PubMed  Google Scholar 

  • Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95:7092–7096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sauseng P, Hoppe J, Klimesch W, Gerloff C, Kummel F (2007) Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur J Neurosci 25:587–593

    Article  CAS  PubMed  Google Scholar 

  • Schack B, Vath N, Petsche H, Geissler HG, Moller E (2002) Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int J Psychophysiol 44:143–163

    Article  CAS  PubMed  Google Scholar 

  • Shaw JC (1984) Correlation and coherence analysis of the EEG: a selective tutorial review. Int J Psychophysiol 1(3):255–266

    Article  CAS  PubMed  Google Scholar 

  • Sohn H, Kim I, Lee W, Peterson BS, Hong H, Chae JH, Hong S, Jeong J (2010) Linear, non-linear, EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task. Clin Neurophysiol 121(11):1863–1870

    Article  PubMed  Google Scholar 

  • Spasić S, Kalauzi A, Culić M, Grbić G, Lj Martać (2005) Fractal analysis of rat brain activity after injury. Med Biol Eng Comput 43:345–348

    Article  PubMed  Google Scholar 

  • Stam CJ (2005) Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 116:2266–2301

    Article  CAS  PubMed  Google Scholar 

  • Stam CJ, Jelles B, Achtereekte HA, Rombouts SARB, Slaets JP, Keunen RWM (1995) Investigation of EEG non-linearity in dementia and Parkinson’s disease. Electroencephal Clin Neurophysiol 95:309–317

    Article  CAS  Google Scholar 

  • Sternberg S (1966) High speed scanning in human memory. Science 153:652–654

    Article  CAS  PubMed  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Permier J (1997) Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci 17(2):722–734

    CAS  PubMed  Google Scholar 

  • Tong S, Huang H, Luan J, Chen H (2005) Dimensional complexity analysis of human EEG in visual processing. Neurocomputing 67:297–305

    Article  Google Scholar 

  • Tononi G, Edelman GM (1998) Consciousness and complexity. Science 282:1846–1851

    Article  CAS  PubMed  Google Scholar 

  • Toth B, Boha R, Posfai M, Gaal ZA, Konya A, Stam CJ, Molnar M (2012) EEG synchronization characteristics of functional connectivity and complex network properties of memory maintenance in the delta and theta frequency bands. Int J Psychophysiol 83(3):399–402. doi:10.1016/j.ijpsycho.2011.11.017

    Article  PubMed  Google Scholar 

  • Tuladhar AM, ter Huurne N, Schoffelen JM, Maris E, Oostenveld R, Jensen O (2007) Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp 28:785–792

    Article  PubMed  Google Scholar 

  • Vasić S (2004) Frequency dictionary of contemporary Serbian language: the fundamentals of new Serbian prose. Beograd: Institut za pedagoška istraživanja [Belgrade: Institute for pedagogic research]

  • Volf NV, Razumnikova OM (1999) Sex differences in EEG coherence during a verbal memory task in normal adults. Int J Psychophysiol 34:113–122. doi:10.1016/S0167-8760(99)00067-7

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Nanbu Y, Koshino Y, Shimada Y, Hashimoto T (1996) Inter- and intrahemispheric EEG coherence during light drowsiness. Clin Electroencephalogr 27(2):84–88

    Article  CAS  PubMed  Google Scholar 

  • White DJ, Congedo M, Ciorciari J, Silberstein RB (2012) Brain oscillatory activity during spatial navigation: theta and gamma activity link medial temporal and parietal regions. J Cogn Neurosci 24:686–697

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under Projects OI 178027 and III 43011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miodrag Stokić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stokić, M., Milovanović, D., Ljubisavljević, M.R. et al. Memory load effect in auditory–verbal short-term memory task: EEG fractal and spectral analysis. Exp Brain Res 233, 3023–3038 (2015). https://doi.org/10.1007/s00221-015-4372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-015-4372-z

Keywords

Navigation