Skip to main content
Log in

Alteration of perceived emotion and brain functional connectivity by changing the musical rhythmic pattern

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The arrangement of musical notes and their time intervals, also known as musical rhythm is one of the core elements of music. Nevertheless, the cognitive process and neural mechanism of the human brain that underlay the perception of musical rhythm are poorly understood. In this study, we hypothesized that changes in musical rhythmic patterns alter the emotional content expressed by music and the way it is perceived, that assumably causes specific changes in the brain functional connectome. Therefore, 18 male children aged 10–14 years old were recruited and exposed to 12 musical excerpts while their brain’s electrical activity was recorded using a 32-channel EEG recorder. The musical rhythmic patterns were changed by manipulating only note values in beats while keeping time signature and other elements in a fixed state. The experienced emotions were assessed using a 2-dimensional self-assessment manikin questionnaire. The behavioral data showed that an increase in the complexity of musical rhythmic patterns significantly enhances perceived valence and arousal levels. In addition, the pattern of brain functional connectivity was also estimated using the weighted phase lag index and their association with behavioral changes was calculated. Interestingly, the behavioral changes were mainly associated with alteration of brain functional connectivity at the alpha band in the fronto-central connections. These results emphasize the important role of the motor cortical site-fronto-central connections, in the perception of musical rhythmic pattern. These findings may improve conception of the underlying brain mechanism involved in the perception of musical rhythm.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altenmüller E, Schürmann K, Lim VK, Parlitz D (2002) Hits to the left, flops to the right: different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia 40(13):2242–2256

    Article  PubMed  Google Scholar 

  • Bengtsson SL, Ullén F, Ehrsson HH, Hashimoto T, Kito T, Naito E, Forssberg H, Sadato N (2009) Listening to rhythms activates motor and premotor cortices. Cortex 45(1):62–71

    Article  PubMed  Google Scholar 

  • Bergeson TR, Trehub SE (2006) Infants perception of rhythmic patterns. Music Percept 23(4):345–360

    Article  Google Scholar 

  • Boone RT, Cunningham JG (2001) Childrenʼs expression of emotional meaning in music through expressive body movement. J Nonverbal Behav 25(1):21–41

    Article  Google Scholar 

  • Bornholdt S, Schuster HG (2006) Handbook of graphs and networks: from the genome to the internet. Wiley, New York

    Google Scholar 

  • Bradley MM, Lang PJ (1994) Measuring emotion: the self-assessment manikin and the semantic differential. J Behav Ther Exp Psychiatry 25(1):49–59

    Article  CAS  PubMed  Google Scholar 

  • Brainard DH, Vision S (1997) The psychophysics toolbox. Spat Vis 10:433–436

    Article  CAS  PubMed  Google Scholar 

  • Brattico E (2006) Cortical processing of musical pitch as reflected by behavioural and electrophysiological evidence

  • Chen JL, Zatorre RJ, Penhune VB (2006) Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage 32(4):1771–1781

    Article  PubMed  Google Scholar 

  • Chen JL, Penhune VB, Zatorre RJ (2008a) Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex 18(12):2844–2854

    Article  PubMed  Google Scholar 

  • Chen JL, Penhune VB, Zatorre RJ (2008b) Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J Cogn Neurosci 20(2):226–239

    Article  PubMed  Google Scholar 

  • Cooke D (1959) The language of music

  • Cooper G, Meyer LB (1963) The rhythmic structure of music. University of Chicago Press, Chicago

    Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Deutsch D (2013) Psychology of music. Academic Press, San Diego

    Google Scholar 

  • Fernández-Sotos A, Fernández-Caballero A, Latorre JM (2015) Elicitation of emotions through music: the influence of note value. Paper presented at the international work-conference on the interplay between natural and artificial computation

  • Fernández-Sotos A, Fernández-Caballero A, Latorre JM (2016) Influence of tempo and rhythmic unit in musical emotion regulation. Front Comput Neurosci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Schlaug G (2013) The Harvard Beat Assessment Test (H-BAT): a battery for assessing beat perception and production and their dissociation. Front Hum Neurosci 7:771

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujioka T, Trainor LJ, Large EW, Ross B (2009) Beta and gamma rhythms in human auditory cortex during musical beat processing. Ann N Y Acad Sci 1169(1):89–92

    Article  PubMed  Google Scholar 

  • Fujioka T, Trainor LJ, Large EW, Ross B (2012) Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J Neurosci 32(5):1791–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerardi GM, Gerken L (1995) The development of affective responses to modality and melodic contour. Music Percept 12(3):279–290

    Article  Google Scholar 

  • Grahn JA, Rowe JB (2009) Feeling the beat: premotor and striatal interactions in musicians and nonmusicians during beat perception. J Neurosci 29(23):7540–7548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory AH, Worrall L, Sarge A (1996) The development of emotional responses to music in young children. Motiv Emot 20(4):341–348

    Article  Google Scholar 

  • Hasson U, Nusbaum HC, Small SL (2009) Task-dependent organization of brain regions active during rest. Proc Natl Acad Sci 106(26):10841–10846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iversen JR, Repp BH, Patel AD (2009) Top-down control of rhythm perception modulates early auditory responses. Ann N Y Acad Sci 1169(1):58–73

    Article  PubMed  Google Scholar 

  • Jacoby N, McDermott JH (2017) Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Curr Biol 27(3):359–370

    Article  CAS  PubMed  Google Scholar 

  • Janata P, Grafton ST (2003) Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci 6(7):682–687

    Article  CAS  PubMed  Google Scholar 

  • Juslin PN, Västfjäll D (2008) Emotional responses to music: the need to consider underlying mechanisms. Behav Brain Sci 31(5):559–575

    Article  PubMed  Google Scholar 

  • Kamenetsky SB, Hill DS, Trehub SE (1997) Effect of tempo and dynamics on the perception of emotion in music. Psychol Music 25(2):149–160

    Article  Google Scholar 

  • Khadem A, Hossein-Zadeh G-A (2014) Quantification of the effects of volume conduction on the EEG/MEG connectivity estimates: an index of sensitivity to brain interactions. Physiol Meas 35(10):2149

    Article  PubMed  Google Scholar 

  • Khalfa S, Schon D, Anton J-L, Liégeois-Chauvel C (2005) Brain regions involved in the recognition of happiness and sadness in music. NeuroReport 16(18):1981–1984

    Article  PubMed  Google Scholar 

  • Khalfa S, Roy M, Rainville P, Dalla Bella S, Peretz I (2008) Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int J Psychophysiol 68(1):17–26

    Article  PubMed  Google Scholar 

  • Khosrowabadi R, Wahab A, Ang KK, Baniasad MH (2009) Affective computation on EEG correlates of emotion from musical and vocal stimuli. Paper presented at the Neural Networks, 2009. IJCNN 2009. International Joint Conference on

  • Khosrowabadi R, Quek C, Ang KK, Wahab A (2014) ERNN: A biologically inspired feedforward neural network to discriminate emotion from EEG signal. IEEE Trans Neural Netw Learn Syst 25(3):609–620

    Article  PubMed  Google Scholar 

  • Khosrowabadi R, Quek C, Ang KK, Wahab A, Chen S-HA (2015) Dynamic screening of autistic children in various mental states using pattern of connectivity between brain regions. Appl Soft Comput 32:335–346

    Article  Google Scholar 

  • Kleiner M, Brainard D, Pelli D, Ingling A, Murray R, Broussard C (2007) What’s new in psychtoolbox-3. Perception 36(14):1

    Google Scholar 

  • Koelsch S, Fritz T, Müller K, Friederici AD (2006) Investigating emotion with music: an fMRI study. Hum Brain Mapp 27(3):239–250

    Article  PubMed  Google Scholar 

  • Kratus J (1993) A developmental study of childrenʼs interpretation of emotion in music. Psychol Music 21(1):3–19

    Article  Google Scholar 

  • Large EW, Fink P, Kelso SJ (2002) Tracking simple and complex sequences. Psychol Res 66(1):3–17

    Article  PubMed  Google Scholar 

  • Lehne M, Rohrmeier M, Koelsch S (2013) Tension-related activity in the orbitofrontal cortex and amygdala: an fMRI study with music. Soc Cogn Affect Neurosci 9(10):1515–1523

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis PA, Wing A, Pope P, Praamstra P, Miall R (2004) Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia 42(10):1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Lin Y-P, Duann J-R, Chen J-H, Jung T-P (2010) Electroencephalographic dynamics of musical emotion perception revealed by independent spectral components. NeuroReport 21(6):410–415

    Article  PubMed  Google Scholar 

  • Lin Y-P, Duann J-R, Feng W, Chen J-H, Jung T-P (2014) Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis. J Neuroeng Rehabil 11(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • Lotze M, Scheler G, Tan H-R, Braun C, Birbaumer N (2003) The musicianʼs brain: functional imaging of amateurs and professionals during performance and imagery. Neuroimage 20(3):1817–1829

    Article  CAS  PubMed  Google Scholar 

  • McAuley JD, Jones MR, Holub S, Johnston HM, Miller NS (2006) The time of our lives: life span development of timing and event tracking. J Exp Psychol Gen 135(3):348

    Article  PubMed  Google Scholar 

  • McDermott JH, Schultz AF, Undurraga EA, Godoy RA (2016) Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature 535(7613):547–550

    Article  CAS  PubMed  Google Scholar 

  • Mognon A, Jovicich J, Bruzzone L, Buiatti M (2011) ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48(2):229–240

    Article  PubMed  Google Scholar 

  • Moore KS (2013) A systematic review on the neural effects of music on emotion regulation: implications for music therapy practice. J Music Ther 50(3):198–242

    Article  PubMed  Google Scholar 

  • Nozaradan S, Peretz I, Missal M, Mouraux A (2011) Tagging the neuronal entrainment to beat and meter. J Neurosci 31(28):10234–10240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaradan S, Peretz I, Mouraux A (2012) Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J Neurosci 32(49):17572–17581. https://doi.org/10.1523/jneurosci.3203-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaradan S, Schwartze M, Obermeier C, Kotz SA (2017) Specific contributions of basal ganglia and cerebellum to the neural tracking of rhythm. Cortex 95:156–168

    Article  PubMed  Google Scholar 

  • Ortiz E, Stingl K, Münßinger J, Braun C, Preissl H, Belardinelli P (2012) Weighted phase lag index and graph analysis: preliminary investigation of functional connectivity during resting state in children. Comput Math Methods Med 2012:186353

    Article  PubMed  PubMed Central  Google Scholar 

  • Palomar-García M-Á, Zatorre RJ, Ventura-Campos N, Bueichekú E, Ávila C (2016) Modulation of functional connectivity in auditory–motor networks in musicians compared with nonmusicians. Cereb Cortex 27(5):2768–2778

    Google Scholar 

  • Pelli DG (1997) The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spat Vis 10(4):437–442

    Article  CAS  PubMed  Google Scholar 

  • Pfurtscheller G, Neuper C, Krausz G (2000) Functional dissociation of lower and upper frequency mu rhythms in relation to voluntary limb movement. Clin Neurophysiol 111(10):1873–1879

    Article  CAS  PubMed  Google Scholar 

  • Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348

    Article  PubMed  Google Scholar 

  • Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RS, Lechevalier B, Eustache F (1997) The structural components of music perception. A functional anatomical study. Brain 120(2):229–243

    Article  PubMed  Google Scholar 

  • Popescu M, Otsuka A, Ioannides AA (2004) Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. Neuroimage 21(4):1622–1638

    Article  PubMed  Google Scholar 

  • Rawal S (2011) Weighted Phase Lag Index (WPLI) as a Method for Identifying Task-Related Functional Networks in Electroencephalography (EEG) Recordings during a Shooting Task. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD HUMAN RESEARCH AND ENGINEERING DIRECTORATE

  • Repp BH, Su Y-H (2013) Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev 20(3):403–452

    Article  PubMed  Google Scholar 

  • Rogenmoser L, Zollinger N, Elmer S, Jäncke L (2016) Independent component processes underlying emotions during natural music listening. Soc Cogn Affect Neurosci 11(9):1428–1439

    Article  PubMed  PubMed Central  Google Scholar 

  • Scherer KR, Zentner MR (2001) Emotional effects of music: Production rules. Music Emot 361:392

    Google Scholar 

  • Schmidt LA, Trainor LJ (2001) Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn Emot 15(4):487–500

    Article  Google Scholar 

  • Schulkind MD (1999) Long-term memory for temporal structure. Mem Cogn 27(5):896–906

    Article  CAS  Google Scholar 

  • Shmulevich, I., & Povel, D.-J. (2000). Complexity measures of musical rhythms. Rhythm perception and production, 239-244

  • Sloboda JA (1991) Music structure and emotional response: Some empirical findings. Psychol Music 19(2):110–120

    Article  Google Scholar 

  • Smith JC, Joyce CA (2004) Mozart versus new age music: relaxation states, stress, and ABC relaxation theory. J Music Ther 41(3):215–224

    Article  PubMed  Google Scholar 

  • Snyder JS, Large EW (2005) Gamma-band activity reflects the metric structure of rhythmic tone sequences. Cogn Brain Res 24(1):117–126

    Article  Google Scholar 

  • Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193. https://doi.org/10.1002/hbm.20346

    Article  PubMed  PubMed Central  Google Scholar 

  • Thoma MV, Ryf S, Mohiyeddini C, Ehlert U, Nater UM (2012) Emotion regulation through listening to music in everyday situations. Cogn Emot 26(3):550–560

    Article  PubMed  Google Scholar 

  • Trost W, Labbé C, Grandjean D (2017) Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia 96:96–110

    Article  Google Scholar 

  • Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CM (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4):1548–1565

    Article  PubMed  Google Scholar 

  • Vuust P, Witek MA (2014) Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music. Front Psychol 5:1111

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace WT (1994) Memory for music: effect of melody on recall of text. J Exp Psychol Learn Mem Cogn 20(6):1471

    Article  Google Scholar 

  • Webster GD, Weir CG (2005) Emotional responses to music: Interactive effects of mode, texture, and tempo. Motiv Emot 29(1):19–39

    Article  Google Scholar 

  • Winkler I, Háden GP, Ladinig O, Sziller I, Honing H (2009) Newborn infants detect the beat in music. Proc Natl Acad Sci 106(7):2468–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Zhang J, Liu C, Liu D, Ding X, Zhou C (2012) Graph theoretical analysis of EEG functional connectivity during music perception. Brain Res 1483:71–81

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zhang J, Ding X, Li R, Zhou C (2013) The effects of music on brain functional networks: a network analysis. Neuroscience 250:49–59

    Article  CAS  PubMed  Google Scholar 

  • Zentner M, Grandjean D, Scherer KR (2008) Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 8(4):494

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank NBML (National Brain Mapping Laboratory of Iran) and also would like to extend thanks to the schools of Rahiyane Noor and Komeil and all the participants and their families who helped us in this study. This work was funded by Shahid Beheshti University (Grant number S/600/111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Khosrowabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 15619 kb)

Supplementary material 2 (RAR 20867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Alipour, Z., Mohammadkhani, S. & Khosrowabadi, R. Alteration of perceived emotion and brain functional connectivity by changing the musical rhythmic pattern. Exp Brain Res 237, 2607–2619 (2019). https://doi.org/10.1007/s00221-019-05616-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-019-05616-w

Keywords

Navigation