Skip to main content
Log in

Conservation laws for conformally invariant variational problems

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We succeed in writing 2-dimensional conformally invariant non-linear elliptic PDE (harmonic map equation, prescribed mean curvature equations,..., etc.) in divergence form. These divergence-free quantities generalize to target manifolds without symmetries the well known conservation laws for weakly harmonic maps into homogeneous spaces. From this form we can recover, without the use of moving frame, all the classical regularity results known for 2-dimensional conformally invariant non-linear elliptic PDE (see [Hel]). It enables us also to establish new results. In particular we solve a conjecture by E. Heinz asserting that the solutions to the prescribed bounded mean curvature equation in arbitrary manifolds are continuous and we solve a conjecture by S. Hildebrandt [Hil1] claiming that critical points of continuously differentiable elliptic conformally invariant Lagrangian in two dimensions are continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bethuel, F.: Un résultat de régularité pour les solutions de l’équation de surfaces courbure moyenne prescrite. C. R. Acad. Sci., Paris, Sér. I, Math. 314(13), 1003–1007 (1992) (French) [A regularity result for solutions to the equation of surfaces of prescribed mean curvature]

  2. Bethuel, F.: Weak limits of Palais-Smale sequences for a class of critical functionals. Calc. Var. Partial Differ. Equ. 1(3), 267–310 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bethuel, F., Ghidaglia, J.-M.: Improved regularity of solutions to elliptic equations involving Jacobians and applications. J. Math. Pures Appl., IX. Sér. 72(5), 441–474 (1993)

    MATH  MathSciNet  Google Scholar 

  4. Bethuel, F., Ghidaglia, J.-M.: Some applications of the coarea formula to partial differential equations. In: Pràstaro, A., Rassias, Th. M. (eds.) Geometry in Partial Differential Equations, pp. 1–17. World Sci. Publishing, River Edge, NJ (1994)

  5. Brezis, H., Coron, J.-M.: Multiple solutions of H-systems and Rellich’s conjecture. Commun. Pure Appl. Math. 37(2), 149–187 (1984)

    MATH  MathSciNet  Google Scholar 

  6. Choné, P.: A regularity result for critical points of conformally invariant functionals. Potential Anal. 4(3), 269–296 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Coifman, R., Lions, P.-L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces. J. Math. Pures Appl., IX. Sér. 72, 247–286 (1993)

    MATH  MathSciNet  Google Scholar 

  8. Evans, C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116, 101–113 (1991)

    Article  MATH  Google Scholar 

  9. Frehse, J.: A discontinuous solution of a mildly nonlinear elliptic system. Math. Z. 134, 229–230 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  10. Freire A., Müller S., Struwe M.: Weak compactness of wave maps and harmonic maps. Ann. Inst. Henri Poincaré 15(6), 725–754 (1998)

    Article  MATH  Google Scholar 

  11. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud., vol. 105. Princeton University Press, Princeton, NJ (1983)

    MATH  Google Scholar 

  12. Grüter, M.: Conformally invariant variational integrals and the removability of isolated singularities. Manuscr. Math. 47(1–3), 85–104 (1984)

    Article  MATH  Google Scholar 

  13. Grüter, M.: Regularity of weak H-surfaces. J. Reine Angew. Math. 329, 1–15 (1981)

    MATH  MathSciNet  Google Scholar 

  14. Heinz, E.: Ein Regularitätssatz für schwache Lösungen nichtlinearer elliptischer Systeme. Nachr. Akad. Wiss. Gött., II. Math.-Phys. Kl. (1), 1–13 (1975) (German)

  15. Heinz, E.: Über die Regularität der Lösungen nichtlinearer Wellengleichungen. Nachr. Akad. Wiss. Gött., II Math.-Phys. Kl. (2), 15–26 (1975) (German)

  16. Heinz, E.: Über die Regularität schwacher Lösungen nichtlinearer elliptischer Systeme. Nachr. Akad. Wiss. Gött., II Math.-Phys. Kl. (1), 1–15 (1986) (German) [On the regularity of weak solutions of nonlinear elliptic systems]

  17. Hélein, F.: Harmonic maps, conservation laws and moving frames. Cambridge Tracts in Mathematics, vol. 150. Cambridge University Press, Cambridge (2002)

  18. Hélein, F.: Problèmes invariants par transformations conformes en dimension 2. http://fr.arxiv.org/pdf/math/0101237?

  19. Hildebrandt, S.: Nonlinear elliptic systems and harmonic mappings. In: Chern, S.S., Wu, W.T. (eds.) Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, vol. 1–3, pp. 481–615, Beijing, 1980. Science Press, Beijing, 1982

  20. Hildebrandt, S.: Quasilinear elliptic systems in diagonal form. Systems of nonlinear partial differential equations, pp. 173–217. Oxford 1982. NATO ASI Ser., Ser C, Math. Phys. Sci., vol. 111. Reidel, Dordrecht, 1983

  21. Hildebrandt, S., Widman, K.-O.: Some regularity results for quasilinear elliptic systems of second order. Math. Z. 142, 67–86 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York London (1968)

    MATH  Google Scholar 

  23. Lin, F.-H., Rivière, T.: Energy quantization for harmonic maps. Duke Math. J. 111(1), 177–193 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Meyer, Y., Rivière, T.: A partial regularity result for a class of stationary Yang-Mills fields in high dimension. Rev. Mat. Iberoam. 19(1), 195–219 (2003)

    MATH  Google Scholar 

  25. Morrey, C.B. Jr.: Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, vol. 130. Springer, New York 1966

  26. Müller, S.: Higher integrability of determinants and weak convergence in L 1. J. Reine Angew. Math. 412, 20–34 (1990)

    MATH  MathSciNet  Google Scholar 

  27. Shatah, J.: Weak solutions and development of singularities of the SU(2) σ-model. Commun. Pure Appl. Math. 41, 459–469 (1988)

    MATH  MathSciNet  Google Scholar 

  28. Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. (1970)

  29. Tartar, L.: Remarks on oscillations and Stokes’ equation. In: Frisch, U., et al. (eds.) Macroscopic Modelling of Turbulent Flows, vol. 230, pp. 24–31. Nice, 1984. Lecture Notes Phys., Springer, Berlin (1985)

  30. Uhlenbeck, K.K.: Connections with L p bounds on curvature. Commun. Math. Phys. 83(1), 31–42 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wente, H.C.: An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26, 318–344 (1969)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivière, T. Conservation laws for conformally invariant variational problems. Invent. math. 168, 1–22 (2007). https://doi.org/10.1007/s00222-006-0023-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-006-0023-0

Keywords

Navigation