Skip to main content
Log in

Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We establish a logarithmic-type rate of convergence for the homogenization of fully nonlinear uniformly elliptic second-order pde in strongly mixing media with similar, i.e., logarithmic, decorrelation rate. The proof consists of two major steps. The first, which is actually the only place in the paper where probability plays a role, establishes the rate for special (quadratic) data using the methodology developed by the authors and Wang to study the homogenization of nonlinear uniformly elliptic pde in general stationary ergodic random media. The second is a general argument, based on the new notion of δ-viscosity solutions which is introduced in this paper, that shows that rates known for quadratic can be extended to general data. As an application of this we also obtain here rates of convergence for the homogenization in periodic and almost periodic environments. The former is algebraic while the latter depends on the particular equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cabre, X., Caffarelli, L.A.: Fully Nonlinear Elliptic Equations. Colloquium Publications, vol. 43. American Math. Soc., Providence (1995)

    MATH  Google Scholar 

  2. Caffarelli, L.A.: A note on nonlinear homogenization. Commun. Pure Appl. Math. 52(7), 829–838 (1999)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L.A., Kinderlehrer, D.: Potential methods in variational inequalities. J. Anal. Math. 37, 285–295 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caffarelli, L.A., Souganidis, P.E.: A rate of convergence for monotone finite difference approximations to fully nonlinear uniformly elliptic pde. Commun. Pure Appl. Math. 61(1), 1–17 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caffarelli, L.A., Souganidis, P.E., Wang, L.: Stochastic homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media. Commun. Pure Appl. Math. 30(1–3), 335–375 (2005)

    MathSciNet  Google Scholar 

  6. Camilli, F., Marchi, C.: Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs. Nonlinearity 22, 1481–1498 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. AMS 27, 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dal Maso, G., Modica, L.: Nonlinear stochastic homogenization and ergodic theory. J. Reine Angew. Math. 368, 28–42 (1986)

    MATH  MathSciNet  Google Scholar 

  9. Evans, L.C.: The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. R. Soc. Edinb. Sect. A 111(3–4), 359–375 (1989)

    MATH  Google Scholar 

  10. Evans, L.C.: Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinburgh Sect. A 120(3–4), 245–265 (1992)

    MATH  Google Scholar 

  11. Evans, L.C., Gomes, D.: Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157(1), 1–33 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fabes, E.B., Stroock, D.: The L p-integrability of Green’s functions and fundamental solutions for elliptic and parabolic equations. Duke Math. J. 51(4), 997–1016 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ichihara, N.: A stochastic representation for fully nonlinear pdes and its application to homogenization. J. Math. Sci. Univ. Tokyo 12, 467–492 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Ishii, H.: Almost periodic homogenization of Hamilton-Jacobi equations. In: International Conference on Differential Equations, vols. 1, 2, Berlin, 1999, pp. 600–605. World Sci. Publ., River Edge (2000)

    Google Scholar 

  15. Jensen, R., Lions, P.-L., Souganidis, P.E.: A uniqueness result for viscosity solutions of fully nonlinear second order partial differential equations. Proc. Am. Math. Soc. 4, 975–978 (1988)

    Article  MathSciNet  Google Scholar 

  16. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994)

    Google Scholar 

  17. Kosygina, E., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium. Commun. Pure Appl. Math. 61(6), 816–847 (2007)

    Article  MathSciNet  Google Scholar 

  18. Kosygina, E., Rezankhanlou, F., Varadhan, S.R.S.: Stochastic homogenization of Hamilton-Jacobi-Bellman equations. Commun. Pure Appl. Math. 59(10), 1489–1521 (2006)

    Article  MATH  Google Scholar 

  19. Kozlov, S.M.: The method of averaging and walk in inhomogeneous environments. Russ. Math. Surv. 40, 73–145 (1985)

    Article  MATH  Google Scholar 

  20. Lions, P.-L., Souganidis, P.E.: Correctors for the homogenization of Hamilton-Jacobi equations in a stationary ergodic setting. Commun. Pure Appl. Math. 56(10), 1501–1524 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lions, P.-L., Souganidis, P.E.: Homogenization for “viscous” Hamilton-Jacobi equations in stationary, ergodic media. Commun. Part. Differ. Equs. 30(1–3), 335–376 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lions, P.-L., Souganidis, P.E.: Homogenization of degenerate second-order pde in periodic and almost periodic environments and applications. Ann. Inst. H. Poincare, Anal. Non Lineaire 22(5), 667–677 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi equations. Preprint

  24. Majda, A., Souganidis, P.E.: Large-scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales. Nonlinearity 7(1), 1–30 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  25. Papanicolaou, G., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Fritz, J., Lebaritz, J.L., Szasz, D. (eds.) Proceed. Colloq. on Random Fields, Rigorous Results in Statistical Mechanics and Quantum Field Theory. Colloquia Mathematica Soc. Janos Bolyai, vol. 10, pp. 835–873. (1979)

  26. Papanicolaou, G., Varadhan, S.R.S.: Diffusion with random coefficients. In: Krishnaiah, P.R.: Essays in Statistics and Probability. North Holland, Amsterdam (1981)

    Google Scholar 

  27. Rezankhanlou, F., Tarver, J.: Homogenization for stochastic Hamilton-Jacobi equations. Arch. Ration. Mech. Anal. 151, 277–309 (2000)

    Article  MathSciNet  Google Scholar 

  28. Schwab, R.: Homogenization of Hamilton-Jacobi equations in space-time stationary ergodic medium. Indiana Univ. Math. J. 58(2), 537–582 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Souganidis, P.E.: Stochastic homogenization for Hamilton-Jacobi equations and applications. Asymptot. Anal. 20, 1–11 (1999)

    MATH  MathSciNet  Google Scholar 

  30. Yurinskii, V.V.: On the homogenization of boundary value problems with random coefficients. Sib. Mat. Zh. 21(3), 209–223 (1980). (English transl.: Sib. Math. J. 21, 470–482 (1981))

    MathSciNet  Google Scholar 

  31. Yurinskii, V.V.: On the homogenization of non-divergent second order equations with random coefficients. Sib. Mat. Zh. 23(2), 176–188 (1982). (English transl.: Sib. Mat. J. 23, 276–287 (1982))

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Caffarelli.

Additional information

Both authors were partially supported by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caffarelli, L.A., Souganidis, P.E. Rates of convergence for the homogenization of fully nonlinear uniformly elliptic pde in random media. Invent. math. 180, 301–360 (2010). https://doi.org/10.1007/s00222-009-0230-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-009-0230-6

Keywords

Navigation