Skip to main content
Log in

Period integrals of CY and general type complete intersections

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We develop a global Poincaré residue formula to study period integrals of families of complex manifolds. For any compact complex manifold X equipped with a linear system V of generically smooth CY hypersurfaces, the formula expresses period integrals in terms of a canonical global meromorphic top form on X. Two important ingredients of this construction are the notion of a CY principal bundle, and a classification of such rank one bundles. We also generalize the construction to CY and general type complete intersections. When X is an algebraic manifold having a sufficiently large automorphism group G and V is a linear representation of G, we construct a holonomic D-module that governs the period integrals. The construction is based in part on the theory of tautological systems we have developed in the paper Lian, Song and Yau (arXiv:1105.2984v1, 2011). The approach allows us to explicitly describe a Picard-Fuchs type system for complete intersection varieties of general types, as well as CY, in any Fano variety, and in a homogeneous space in particular. In addition, the approach provides a new perspective of old examples such as CY complete intersections in a toric variety or partial flag variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audin, M.: The Topology of Torus Actions on Symplectic Manifolds. Birkhäuser, Basel (1991)

    Book  MATH  Google Scholar 

  2. Batyrev, V.: Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori. Duke Math. J. 69(2), 349–409 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Batyrev, V., Cox, D.: On the Hodge structure of projective hypersurfaces in toric varieties. Duke Math. J. 75(2), 293–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bott, R.: Homogeneous vector bundles. Ann. Math. 66(2), 203–248 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  5. Calabi, E.: Métriques Kählériannes et fibrés holomorphes. Ann. Sci. Éc. Norm. Super. 12, 269–294 (1979)

    MathSciNet  Google Scholar 

  6. Cox, D.: The homogeneous coordinate ring of a toric variety. J. Algebr. Geom. 4(1), 17–50 (1995)

    MATH  Google Scholar 

  7. Danilov, V.: The geometry of toric varieties. Russ. Math. Surv. 33, 97–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fulton, W.: Introduction to Toric Varieties. Annals of Math. Studies. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  9. Gel’fand, I., Kapranov, M., Zelevinsky, A.: Hypergeometric functions and toral manifolds. Funct. Anal. Appl. 23, 94–106 (1989). English translation

    Article  MathSciNet  MATH  Google Scholar 

  10. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  11. Hosono, S., Lian, B.H., Yau, S.-T.: GKZ-generalized hypergeometric systems in mirror symmetry of Calabi-Yau hypersurfaces. Commun. Math. Phys. 182, 535–577 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hosono, S., Lian, B.H., Yau, S.-T.: Maximal degeneracy points of GKZ systems. J. Am. Math. Soc. 10(2), 427–443 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jaczewski, K.: Generalized Euler sequence and toric varieties. In: Contemporary Math., vol. 162, pp. 227–247 (1994)

    Google Scholar 

  14. Kempf, G.: Equations of isotropy. In: Group Actions and Invariant Theory, Montreal, PQ, 1988. CMS Conf. Proc., vol. 10. Am. Math. Soc., Providence (1989)

    Google Scholar 

  15. Lian, B.H., Li, S., Yau, S.-T.: Picard-Fuchs equations for relative periods and Abel-Jacobi map for Calabi-Yau hypersurfaces. Am. J. Math. (2012, to appear). arXiv:0910.4215

  16. Lian, B.H., Song, R., Yau, S.-T.: Period integrals and tautological systems. arXiv:1105.2984v1

  17. Lichtenstein, W.: A system of quadrics describing the orbit of the highest weight vector. Proc. Am. Math. Soc. 84(4), 605–608 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oda, T.: Convex Bodies and Algebraic Geometry, An Introduction to the Theory of Toric Varieties. Springer, Berlin (1985)

    Google Scholar 

  19. Popov, V.L.: Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles. Math. USSR Izv. 8(2), 301–327 (1974)

    Article  Google Scholar 

  20. Procesi, C.: Lie Groups: An Approach Through Invariants and Representations. Universitext. Springer, Berlin (2005). 368 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong H. Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lian, B.H., Yau, ST. Period integrals of CY and general type complete intersections. Invent. math. 191, 35–89 (2013). https://doi.org/10.1007/s00222-012-0391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0391-6

Keywords

Navigation