Skip to main content
Log in

Dissipative continuous Euler flows

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We show the existence of continuous periodic solutions of the 3D incompressible Euler equations which dissipate the total kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the incompressible Euler system. Preprint (2012)

  2. Constantin, P., Majda, A.: The Beltrami spectrum for incompressible fluid flows. Commun. Math. Phys. 115(3), 435–456 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Constantin, P.E.W., Titi, E.S.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys. 165(1), 207–209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Conti, S., De Lellis, C., Székelyhidi, L. Jr.: h-principle and rigidity for C 1,α isometric embeddings. In: Proceedings of the Abel Symposia, vol. 7, pp. 83–116 (2012). doi:10.1007/978-3-642-25361-4_5

    Google Scholar 

  5. Cordoba, D., Faraco, D., Gancedo, F.: Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Ration. Mech. Anal. 200(3), 725–746 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Lellis, C., Székelyhidi, L. Jr.: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009)

    Article  MATH  Google Scholar 

  7. De Lellis, C., Székelyhidi, L. Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Lellis, C., Székelyhidi, L. Jr.: The h-principle and the equations of fluid dynamics. Preprint (2011)

  9. Duke, W.: An introduction to the Linnik problems. In: Equidistribution in Number Theory, an Introduction. NATO Sci. Ser. II Math. Phys. Chem., vol. 237, pp. 197–216. Springer, Dordrecht (2007)

    Chapter  Google Scholar 

  10. Eliashberg, Y., Mishachev, N.: Introduction to the h-principle. Graduate Studies in Mathematics, vol. 48. American Mathematical Society, Providence (2002)

    Google Scholar 

  11. Eyink, G.L.: Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Physica D 78(3–4), 222–240 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

    MATH  Google Scholar 

  13. Gromov, M.: Partial Differential Relations. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 9. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  14. Iwaniec, H.: Fourier coefficients of modular forms of half-integral weight. Invent. Math. 87(2), 385–401 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kirchheim, B., Müller, S., Šverák, V.: Studying nonlinear PDE by geometry in matrix space. In: Hildebrandt, S., Karcher, H. (eds.) Geometric Analysis and Nonlinear Partial Differential Equations, pp. 347–395. Springer, Berlin (2003)

    Chapter  Google Scholar 

  16. Linnik, Y.V.: Ergodic Properties of Algebraic Fields. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 45. Springer, New York (1968). Translated from the Russian by M.S. Keane

    Book  MATH  Google Scholar 

  17. Nash, J.: C 1 isometric imbeddings. Ann. Math. 60, 383–396 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9) 6(Suppl. 2), 279–287 (1949). (Convegno Internazionale di Meccanica Statistica)

    Article  MathSciNet  Google Scholar 

  19. Sarnak, P.: Some Applications of Modular Forms. Cambridge Tracts in Mathematics, vol. 99. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  20. Scheffer, V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3(4), 343–401 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shnirelman, A.: On the nonuniqueness of weak solution of the Euler equation. Commun. Pure Appl. Math. 50(12), 1261–1286 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shnirelman, A.: Weak solutions with decreasing energy of incompressible Euler equations. Commun. Math. Phys. 210(3), 541–603 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shvydkoy, R.: Convex integration for a class of active scalar equations. J. Am. Math. Soc. 24(4), 1159–1174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simon, L.: Schauder estimates by scaling. Calc. Var. Partial Differ. Equ. 5(5), 391–407 (1997)

    Article  MATH  Google Scholar 

  25. Sychev, M.A.: A few remarks on differential inclusions. Proc. R. Soc. Edinb., Sect. A 136(3), 649–668 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Székelyhidi, L. Jr.: Relaxation of the incompressible porous medium equation. Ann. Sci. l’ENS 45(3), 491–509 (2012)

    MATH  Google Scholar 

  27. Székelyhidi, L. Jr., Wiedemann, E.: Young measures generated by ideal incompressible fluid flows. doi:10.1007/s00205-012-0540-5

  28. Wiedemann, E.: Existence of weak solutions for the incompressible Euler equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28(5), 727–730 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank Peter Constantin and Sergio Conti for several very valuable discussions on earlier attempts to prove Theorem 1.1. Moreover we are grateful to Antoine Choffrut for several comments on earlier versions of the paper, which considerably improved its readability. The first author acknowledges the support of the SFB Grant TR71, the second author acknowledges the support of the ERC Grant Agreement No. 277993 and the support of the Hausdorff Center for Mathematics in Bonn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillo De Lellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lellis, C., Székelyhidi, L. Dissipative continuous Euler flows. Invent. math. 193, 377–407 (2013). https://doi.org/10.1007/s00222-012-0429-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-012-0429-9

Keywords

Navigation