Skip to main content
Log in

Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We study quantitatively the effective large-scale behavior of discrete elliptic equations on the lattice \(\mathbb Z^d\) with random coefficients. The theory of stochastic homogenization relates the random, stationary, and ergodic field of coefficients with a deterministic matrix of effective coefficients. This is done via the corrector problem, which can be viewed as a highly degenerate elliptic equation on the infinite-dimensional space of admissible coefficient fields. In this contribution we develop new quantitative methods for the corrector problem based on the assumption that ergodicity holds in the quantitative form of a Spectral Gap Estimate w.r.t. a Glauber dynamics on coefficient fields—as it is the case for independent and identically distributed coefficients. As a main result we prove an optimal decay in time of the semigroup associated with the corrector problem (i.e. of the generator of the process called “random environment as seen from the particle”). As a corollary we recover existence of stationary correctors (in dimensions \(d>2\)) and prove new optimal estimates for regularized versions of the corrector (in dimensions \(d\ge 2\)). We also give a self-contained proof of a new estimate on the gradient of the parabolic, variable-coefficient Green’s function, which is a crucial analytic ingredient in our approach. As an application of these results, we prove the first (and optimal) estimates for the approximation of the homogenized coefficients by the popular periodization method in case of independent and identically distributed coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aronson, D.G.: Bounds for the fundamental solution of a parabolic equation. Bull. Am. Math. Soc. 73(6), 890–896 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bourgeat, A., Piatnitski, A.: Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asympt. Anal. 21(3–4), 303–315 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Biskup, M.: Recent progress on the Random Conductance Model. Probab. Surv. 8, 294–373 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bolthausen, E., Sznitman, A.-S.: Ten lectures on random media. DMV Seminar, vol. 32. Birkhäuser, Basel (2002)

  5. Bourgeat, A., Piatnitski, A.: Approximations of effective coefficients in stochastic homogenization. Ann. I. H. Poincaré 40, 153–165 (2005)

    Article  MathSciNet  Google Scholar 

  6. Conlon, J.G., Naddaf, A.: Greens functions for elliptic and parabolic equations with random coefficients. N. Y. J. Math. 6, 153–225 (2000)

    MATH  MathSciNet  Google Scholar 

  7. Conlon, J.G., Spencer, T.: Strong convergence to the homogenized limit of elliptic equations with random coefficients. Trans. Am. Math. Soc. (2014, in press)

  8. Delmotte, T.: Estimations pour les chaînes de Markov réversibles. C. R. Acad. Sci. Paris Sér. I Math. 324(9), 1053–1058 (1997)

  9. Delmotte, T., Deuschel, J.-D.: On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to \(\nabla \phi \) interface model. Probab. Theory Relat. Fields 133, 358–390 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dobrushin, R.L., Shlosman, S.B.: Completely analytical Gibbs fields. In: Statistical physics and dynamical systems (Köszeg, 1984), Progr. Phys., vol. 10, pp. 371–403. Birkhäuser Boston, Boston (1985)

  11. Dobrushin, R.L., Shlosman, S.B.: Constructive criterion for the uniqueness of Gibbs field. In: Statistical Physics and Dynamical Systems (Köszeg, 1984), Progr. Phys., vol. 10, pp. 347–370. Birkhäuser Boston, Boston (1985)

  12. E, W., Ming, P.B., Zhang, P.W.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18, 121–156 (2005)

    Google Scholar 

  13. Egloffe, A.-C., Gloria, A., Mourrat, J.-C., Nguyen, T.N.: Random walk in random environment, corrector equation, and homogenized coefficients: from theory to numerics, back and forth. IMA J. Numer. Analy. doi:10.1093/imanum/dru010

  14. Fabes, E.B., Stroock, D.W.: A new proof of Moser’s parabolic harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96(4), 327–338 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Funaki, T.: Stochastic interface models, Lectures on Probability Theory and Statistics. Lecture Notes Math. 1869, 103–274 (2005)

    Article  MathSciNet  Google Scholar 

  16. Funaki, T., Spohn, H.: Motion by mean curvature from the GinzburgLandau \(\nabla \varphi \) interface models. Commun. Math. Phys. 185, 1–36 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Giacomin, G., Olla, S., Spohn, H.: Equilibrium fluctuations for \(\nabla \varphi \) interface model. Ann. Probab. 29(3), 1138–1172 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gloria, A.: Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations. M2AN. Math. Model. Numer. Anal. 46(1), 1–38 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gloria, A., Mourrat, J.-C.: Spectral measure and approximation of homogenized coefficients. Probab. Theory Relat. Fields 154(1), 287–326 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics—long version. MPI (2013, preprint 3)

  21. Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39(3), 779–856 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gloria, A., Otto, F.: An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22(1), 1–28 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gloria, A., Otto, F.: Quantitative estimates on the corrector equation in stochastic homogenization (in preparation)

  24. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40, 3647–3679 (2003)

    Article  MATH  Google Scholar 

  25. Kipnis, C., Varadhan, S.R.S.: Central limit theorem for additive functional of reversible Markov processes and applications to simple exclusion. Commun. Math. Phys. 104, 1–19 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kozlov, S.M.: The averaging of random operators. Mat. Sb. (N.S.) 109(151), 188–202, 327 (1979)

    Google Scholar 

  27. Kozlov, S.M.: Averaging of difference schemes. Math. USSR Sbornik 57(2), 351–369 (1987)

    Article  MATH  Google Scholar 

  28. Künnemann, R.: The diffusion limit for reversible jump processes on \(\mathbb{Z}^d\) with ergodic random bond conductivities. Commun. Math. Phys. 90, 27–68 (1983)

    Article  MATH  Google Scholar 

  29. Meyers, N.: An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17(3), 189–206 (1963)

  30. Mourrat, J.-C.: Variance decay for functionals of the environment viewed by the particle. Ann. Inst. H. Poincaré Probab. Stat. 47(11), 294–327 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Naddaf, A., Spencer, T.: On homogenization and scaling limits of some gradient perturbations of a massless free field. Commun. Math Phys. 183, 55–84 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Naddaf, A., Spencer, T.: Estimates on the variance of some homogenization problems (1998, preprint)

  33. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80(4), 931–954 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  34. Owhadi, H.: Approximation of the effective conductivity of ergodic media by periodization. Probab. Theory Relat. Fields 125, 225–258 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Random Fields, vols. I, II (Esztergom, 1979), Colloq. Math. Soc. János Bolyai, vol. 27, pp. 835–873. North-Holland, Amsterdam (1981)

  36. Stroock, D.W., Zegarliński, B.: The equivalence of the logarithmic Sobolev inequality and the Dobrushin–Shlosman mixing condition. Commun. Math. Phys. 144(2), 303–323 (1992)

    Article  MATH  Google Scholar 

  37. Stroock, D.W., Zegarliński, B.: The logarithmic Sobolev inequality for continuous spin systems on a lattice. J. Funct. Anal. 104(2), 299–326 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  38. Stroock, D.W., Zegarliński, B.: The logarithmic Sobolev inequality for discrete spin systems on a lattice. Commun. Math. Phys. 149(1), 175–193 (1992)

    Article  MATH  Google Scholar 

  39. Yurinskii, V.V.: Vilnius Conference Abstracts (1978)

  40. Yurinskii, V.V.: Averaging of symmetric diffusion in random medium. Sibirskii Matematicheskii Zhurnal 27(4), 167–180 (1986)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

Felix Otto wants to acknowledge the hospitality of the University of Paris-Sud (Orsay)—most of the presented material was covered by a Hadamard lecture Felix Otto gave in 2012 at that institution, which in turn was an extended version of a minitutorial at the SIAM PDE conference of 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gloria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloria, A., Neukamm, S. & Otto, F. Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. math. 199, 455–515 (2015). https://doi.org/10.1007/s00222-014-0518-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-014-0518-z

Navigation