Skip to main content
Log in

Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations

  • Published:
Inventiones mathematicae Aims and scope

Abstract

In this paper, we prove the existence of global weak solutions for 3D compressible Navier–Stokes equations with degenerate viscosity. The method is based on the Bresch and Desjardins (Commun Math Phys 238:211–223 2003) entropy conservation. The main contribution of this paper is to derive the Mellet and Vasseur (Commun Partial Differ Equ 32:431–452, 2007) type inequality for weak solutions, even if it is not verified by the first level of approximation. This provides existence of global solutions in time, for the compressible barotropic Navier–Stokes equations. The result holds for any \(\gamma >1\) in two dimensional space, and for \(1<\gamma <3\) in three dimensional space, in both case with large initial data possibly vanishing on the vacuum. This solves an open problem proposed by Lions (Mathematical topics in fluid mechanics. Vol. 2. Compressible models, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that \(\kappa \) here is not related to the \(\kappa \) term in (1.6).

References

  1. Bresch, D., Desjardins, B.: Existence of global weak solutions for 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238(1–3), 211–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bresch, D., Desjardins, B.: On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier–Stokes models. J. Math. Pures Appl. (9) 86(4), 362–368 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bresch, D., Desjardins, B., Lin, C.-K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28(3–4), 843–868 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bresch, D., Desjardins, B., Zatorska, E.: Two-velocity hydrodynamics in fluid mechanics: part II existence of global-entropy solutions to compressible Navier–Stokes systems with degenerate viscosities. arXiv:1411.5488

  5. Bresch, D., Noble, P.: Mathematical justification of a shallow water model. Methods Appl. Anal. 14(2), 87–117 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Bresch, D., Noble, P.: Mathematical derivation of viscous shallow-water equations with zero surface tension. Indiana Univ. Math. J. 60(4), 113–1169 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bresch, D., Vasseur, A., Yu, C.: Global weak solutions to 3D compressible Navier–Stokes equations. (2015) (in preparation)

  8. Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141(3), 579–614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Danchin, R.: Well-posedness in critical spaces for barotropic viscous fluids with truly not constant density. Commun. Partial Differ. Equ. 32(7–9), 1373–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ducomet, B., Nečasová, Š., Vasseur, A.: On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities. Z. Angew. Math. Phys. 61(3), 479–491 (2010)

  11. Ducomet, B., Nečasová, Š., Vasseur, A.: On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas. J. Math. Fluid Mech. 13(2), 191–211 (2011)

  12. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  13. Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier–Stokes equations. J. Math. Fluid Mech. 3, 358–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications, vol. 26. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (2004)

    Google Scholar 

  15. Gent, P.: The energetically consistent shallow water equations. J. Atmos. Sci. 50, 1323–1325 (1993)

    Article  Google Scholar 

  16. Germain, P.: Weak-strong uniqueness for the isentropic compressible Navier–Stokes system. J. Math. Fluid Mech. 13(1), 137–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gisclon, M., Lacroix-Violet, I.: About the barotropic compressible quantum Navier–Stokes equations. arXiv:1412.1332

  18. Guo, Z., Jiu, Q., Xin, Z.: Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients. SIAM J. Math. Anal. 39(5), 1402–1427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haspot, B.: Well-posedness in critical spaces for the system of compressible Navier–Stokes in larger spaces. J. Differ. Equ. 251(8), 2262–2295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoff, D.: Global existence for 1D, compressible, isentropic Navier–Stokes equations with large initial data. Trans. Am. Math. Soc. 303(1), 169–181 (1987)

    MathSciNet  MATH  Google Scholar 

  21. Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional, compressible flow with discontinuous initial data. J. Diff. Equ. 120, 215–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoff, D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data. Arch. Rational Mech. Anal. 132, 1–14 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hoff, D.: Discontinuous solutions of the Navier-Stokes equations for multidimensional heat-conducting flow. Arch. Rational Mech. Anal. 139, 303–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jüngel, A.: Global weak solutions to compressible Navier–Stokes equations for quantum fluids. SIAM J. Math. Anal. 42(3), 1025–1045 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas. J. Appl. Math. Mech. 41(2), 273C282 (1977). translated from Prikl. Mat. Meh. 41(2), 282–291 (1977) (Russian)

  26. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models. Oxford Lecture Series in Mathematics and its Applications, vol. 3. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998)

    Google Scholar 

  27. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models. Oxford Lecture Series in Mathematics and its Applications, vol. 10. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1998)

    Google Scholar 

  28. Marche, F.: Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B Fluids 26(1), 4963 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Japan Acad. Ser. A Math. Sci. 55, 337–342 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  30. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  31. Matsumura, A., Nishida, T.: Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys. 89, 445–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mellet, A., Vasseur, A.: On the barotropic compressible Navier–Stokes equations. Commun. Partial Differ. Equ. 32(1–3), 431–452 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mellet, A., Vasseur, A.: Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal. 39(4), 1344-1365 (2007/08)

  34. Serre, D.: Solutions faibles globales des quations de Navier–Stokes pour un fluide compressible. C. R. Acad. Sci. Paris. I Math. 303(13), 639–642 (1986)

    MATH  Google Scholar 

  35. Shelukhin, V.V.: A shear flow problem for the compressible Navier–Stokes equations. Non Linear Mech. 33, 247–257 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Serre, D.: Solutions faibles globales des quations de Navier–Stokes pour un fluide compressible. C. R. Acad. Sci. Paris. I Math. 303(13), 639–642 (1986)

    MATH  Google Scholar 

  37. Vaigant, V.A., Kazhikhov, A.V.: On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid. Sibirsk. Mat. Zh. (Russian) 36(6), 1283–1316, ii (1995); translation in Siberian Math. J. 36(6), 1108–1141 (1995)

  38. Vasseur, A., Yu, C.: Global weak solutions to the compressible quantum Navier–Stokes equations with damping. SIAM J. Math. Anal. 48(2), 1489–1511 (2016)

  39. Zatorska, E.: On the flow of chemically reacting gaseous mixture. J. Differ. Equ. 253(12), 34713500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

A. Vasseur’s research was supported in part by NSF Grant DMS-1209420. C. Yu’s research was supported in part by an AMS-Simons Travel Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis F. Vasseur.

Appendix1: Proof of the Lemma 2.2

Appendix1: Proof of the Lemma 2.2

Proof

We prove each statement one by one as follows:

  • (a) Thanks to (2.4), we have \(\varphi '_n(\mathbf{u})=2\tilde{\varphi }'_n(|\mathbf{u}|^2)\mathbf{u}\), and

    $$\begin{aligned} \varphi _n''(\mathbf{u})=2\left( 2\tilde{\varphi }_n''(|\mathbf{u}|^2)\mathbf{u}\otimes \mathbf{u}+\mathbf {I} \tilde{\varphi }_n'(|\mathbf{u}|^2)\right) , \end{aligned}$$

    where \(\mathbf {I}\) is \(3\times 3\) identity matrix.

  • (b) The statement of (b) follows directly from (2.5).

  • (c) Integrating (2.5) with initial data \(\tilde{\varphi }'_n(0)=0,\) one obtains

    $$\begin{aligned} \tilde{\varphi }'_n(y)=\left\{ \begin{array}{ll} 1+\ln (1+y) &{}\quad \text { if }\,0\le y< n, \\ 1+2\ln (1+n)-\ln (1+y), &{}\quad \text { if }\, n\le y\le C_n \\ 0&{}\quad \text { if } y \ge C_n, \end{array}\right. \end{aligned}$$
    (7.1)

    Since

    $$\begin{aligned} 1+2\ln (1+n)-\ln (1+C_n)= 0, \end{aligned}$$

    for any \(y\ge 0\), (7.1) implies

    $$\begin{aligned} \tilde{\varphi }'_n(y)\ge 0. \end{aligned}$$

    For any \(n\le y\le C_n,\) we have

    $$\begin{aligned} 1+2\ln (1+n)-\ln (1+y)\le & {} 1+2\ln (1+y)-\ln (1+y)\\= & {} 1+\ln (1+y). \end{aligned}$$

    In one word, for any \(y\ge 0\), we have

    $$\begin{aligned} 0\le \tilde{\varphi }'_n(y)\le 1+\ln (1+y). \end{aligned}$$
  • (d) By (a)–(c), it follows

    $$\begin{aligned} |\varphi ^{''}_n(\mathbf{u})|\le & {} 4|\tilde{\varphi }''_n||\mathbf{u}|^2+2|\tilde{\varphi }'_n|\le 4\frac{|\mathbf{u}|^2}{1+|\mathbf{u}|^2}+2(1+\ln (1+n))\\\le & {} 6+2\ln (1+n). \end{aligned}$$
  • (e) Integrating (7.1) with initial data \(\tilde{\varphi }_n(0)=0\), it gives (2.9). Moreover, thanks to (c), \(\tilde{\varphi }_n(y)\) is an increasing function with respect to y for any fixed n. We have that \(\tilde{\varphi }_n(y)\) is a nondecreasing function with respect to n for any fixed y.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasseur, A.F., Yu, C. Existence of global weak solutions for 3D degenerate compressible Navier–Stokes equations. Invent. math. 206, 935–974 (2016). https://doi.org/10.1007/s00222-016-0666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-016-0666-4

Mathematics Subject Classification

Navigation