Skip to main content

Advertisement

Log in

Maxillary Sinus Floor Elevation Using BMP-2 and Nell-1 Gene-Modified Bone Marrow Stromal Cells and TCP in Rabbits

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

This study evaluated the synergistic osteogenic effect of bone morphogenetic protein-2 (BMP-2) and Nel-like molecule-1 (Nell-1) genes in a rabbit maxillary sinus floor elevation model. Bone marrow stromal cells (bMSCs) were cultured and transduced with AdEGFP, AdNell-1, AdBMP-2, or AdNell-1 + AdBMP-2 overexpression virus. These gene-modified autologous bMSCs were then combined with a β-tricalcium phosphate (β-TCP) granule scaffold and used to elevate the maxillary sinus floor in rabbits. bMSCs cotransduced with AdNell-1 + AdBMP-2 demonstrated a synergistic effect on osteogenic differentiation as detected by real-time PCR analysis on markers of runt-related transcription factor-2, osteocalcin, collagen type 1, alkaline phosphatase activity, and calcium deposits in vitro. As for maxillary sinus floor elevation in a rabbit model in vivo, AdNell-1 + AdBMP-2 gene–transduced autologeous bMSCs/β-TCP complex had the largest bone area and most mature bone structure among the groups, as detected by HE staining and immunohistochemistry at weeks 2 and 8 after implantation. Our data suggested that the BMP-2 and Nell-1 genes possessed a synergistic effect on osteogenic differentiation of bMSCs, while bMSCs modified with the BMP-2 and Nell-1 genes could promote new bone formation and maturation in the rabbit maxillary sinus model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ostman PO (2008) Immediate/early loading of dental implants. Clinical documentation and presentation of a treatment concept. Periodontol 2000 47:90–112

    Article  PubMed  Google Scholar 

  2. Junker R, Dimakis A, Thoneick M, Jansen JA (2009) Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 20:185–206

    Article  PubMed  Google Scholar 

  3. Sul SH, Choi BH, Li J, Jeong SM, Xuan F (2008) Effects of sinus membrane elevation on bone formation around implants placed in the maxillary sinus cavity: an experimental study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:684–687

    Article  PubMed  Google Scholar 

  4. Kahnberg KE, Ekestubbe A, Gröndahl K, Nilsson P, Hirsch JM (2001) Sinus lifting procedure. I. One-stage surgery with bone transplant and implants. Clin Oral Implants Res 12:479–487

    Article  PubMed  CAS  Google Scholar 

  5. Graziani F, Donos N, Needleman I, Gabriele M, Tonetti M (2004) Comparison of implant survival following sinus floor augmentation procedures with implants placed in pristine posterior maxillary bone: a systematic review. Clin Oral Implants Res 15:677–682

    Article  PubMed  Google Scholar 

  6. Ueda M, Tohnai I, Nakai H (2001) Tissue engineering research in oral implant surgery. Artif Organs 25:164–171

    Article  PubMed  CAS  Google Scholar 

  7. Wiltfang J, Merten HA, Schlegel KA, Schultze-Mosgau S, Kloss FR, Rupprecht S, Kessler P (2002) Degradation characteristics of alpha and beta tri-calcium phosphate (TCP) in minipigs. J Biomed Mater Res 63:115–121

    Article  PubMed  CAS  Google Scholar 

  8. Crane GM, Ishaug SL, Mikos AG (1995) Bone tissue engineering. Nat Med 1:1322–1324

    Article  PubMed  CAS  Google Scholar 

  9. Sun XJ, Zhang ZY, Wang SY, Gittens SA, Jiang XQ, Chou LL (2008) Maxillary sinus floor elevation using tissue-engineered bone complex with OsteoBone and bMSCs in rabbits. Clin Oral Implants Res 19:804–813

    Article  PubMed  Google Scholar 

  10. Nevins M, Kirker-Head C, Nevins M, Wozney JA, Palmer R, Graham D (1996) Bone formation in the goat maxillary sinus induced by absorbable collagen sponge implants impregnated with recombinant human bone morphogenetic protein-2. Int J Periodontics Restorative Dent 16:8–19

    PubMed  CAS  Google Scholar 

  11. Feeley BT, Conduah AH, Sugiyama O, Krenek L, Chen IS, Lieberman JR (2006) In vivo molecular imaging of adenoviral versus lentiviral gene therapy in two bone formation models. J Orthop Res 24:1709–1721

    Article  PubMed  CAS  Google Scholar 

  12. Jiang XQ, Sun XJ, Lai HC, Zhao J, Wang SY, Zhang ZY (2009) Maxillary sinus floor elevation using a tissue-engineered bone complex with beta-TCP and BMP-2 gene-modified bMSCs in rabbits. Clin Oral Implants Res 20:1333–1340

    Article  PubMed  Google Scholar 

  13. Cheng SL, Lou J, Wright NM, Lai CF, Avioli LV, Riew KD (2002) In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. Calcif Tissue Int 68:87–94

    Article  Google Scholar 

  14. Boden SD, Kang J, Sandhu H, Heller JG (2002) Use of recombinant human bone morphogenetic protein-2 to achieve posterolateral lumbar spine fusion in humans: a prospective, randomized clinical pilot trial. 2002 Volvo Award in Clinical Studies. Spine 27:2662–2673

    Article  PubMed  Google Scholar 

  15. Carpenter RS, Goodrich LR, Frisbie DD, Kisiday JD, Carbone B, McIlwraith CW, Centeno CJ, Hidaka C (2010) Osteoblastic differentiation of human and equine adult bone marrow–derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone. J Orthop Res 28:1330–1337

    Article  PubMed  CAS  Google Scholar 

  16. Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 18:1026–1034

    Article  PubMed  CAS  Google Scholar 

  17. Yang S, Wei D, Wang D, Phimphilai M, Krebsbach PH, Franceschi RT (2003) In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res 18:705–715

    Article  PubMed  CAS  Google Scholar 

  18. Zhang X, Kuroda S, Carpenter D, Nishimura I, Soo C, Moats R, Iida K, Wisner E, Hu FY, Miao S, Beanes S, Dang C, Vastardis H, Longaker M, Tanizawa K, Kanayama N, Saito N, Ting K (2002) Craniosynostosis in transgenic mice overexpressing Nell-1. J Clin Invest 110:861–870

    PubMed  CAS  Google Scholar 

  19. Ting K, Vastardis H, Mulliken JB, Soo C, Tieu A, Do H, Kwong E, Bertolami CN, Kawamoto H, Kuroda S, Longaker MT (1999) Human NELL-1 expressed in unilateral coronal synostosis. J Bone Miner Res 14:80–89

    Article  PubMed  CAS  Google Scholar 

  20. Kuroda S, Oyasu M, Kawakami M, Kanayama N, Tanizawa K, Saito N, Abe T, Matsuhashi S, Ting K (1999) Biochemical characterization and expression analysis of neural thrombospondin-1-like proteins NELL1 and NELL2. Biochem Biophys Res Commun 265:79–86

    Article  PubMed  CAS  Google Scholar 

  21. Kuroda S, Tanizawa K (1999) Involvement of epidermal growth factor-like domain of NELL proteins in the novel protein–protein interaction with protein kinase C. Biochem Biophys Res Commun 265:752–757

    Article  PubMed  CAS  Google Scholar 

  22. Zhang X, Carpenter D, Bokui N, Soo C, Miao S, Truong T, Wu B, Chen I, Vastardis H, Tanizawa K, Kuroda S, Ting K (2003) Overexpression of Nell-1, a craniosynostosis-associated gene, induces apoptosis in osteoblasts during craniofacial development. J Bone Miner Res 18:2126–2134

    Article  PubMed  CAS  Google Scholar 

  23. Aghaloo T, Jiang X, Soo C, Zhang Z, Zhang X, Hu J, Pan H, Hsu T, Wu B, Ting K, Zhang X (2007) A study of the role of Nell-1 gene modified goat bone marrow stromal cells in promoting new bone formation. Mol Ther 15:1872–1880

    Article  PubMed  CAS  Google Scholar 

  24. Hu JZ, Zhang ZY, Zhao J, Zhang XL, Liu GT, Jiang XQ (2009) An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice. Chin Med J (Engl) 122:972–979

    CAS  Google Scholar 

  25. Cowan CM, Jiang X, Hsu T, Soo C, Zhang B, Wang JZ, Kuroda S, Wu B, Zhang Z, Zhang X, Ting K (2007) Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts. J Bone Miner Res 22:918–930

    Article  PubMed  CAS  Google Scholar 

  26. Jiang X, Gittens SA, Chang Q, Zhang X, Chen C, Zhang Z (2006) The use of tissue-engineered bone with human bone morphogenetic protein-4-modified bone-marrow stromal cells in repairing mandibular defects in rabbits. Int J Oral Maxillofac Surg 35:1133–1139

    Article  PubMed  CAS  Google Scholar 

  27. Wang S, Zhang Z, Xia L, Zhao J, Sun X, Zhang X, Ye D, Uludağ H, Jiang X (2010) Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model. Bone 46:91–100

    Article  PubMed  CAS  Google Scholar 

  28. Zhu L, Chuanchang D, Wei L, Yilin C, Jiasheng D (2010) Enhanced healing of goat femur-defect using BMP7 gene-modified BMSCs and load-bearing tissue-engineered bone. J Orthop Res 28:412–418

    PubMed  Google Scholar 

  29. Zerbo IR, Bronckers AL, de Lange GL, van Beek GJ, Burger EH (2001) Histology of human alveolar bone regeneration with a porous tricalcium phosphate. A report of two cases. Clin Oral Implants Res 12:379–384

    Article  PubMed  CAS  Google Scholar 

  30. Ormianer Z, Palti A, Shifman A (2006) Survival of immediately loaded dental implants in deficient alveolar bone sites augmented with beta-tricalcium phosphate. Implant Dent 15:395–403

    Article  PubMed  Google Scholar 

  31. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  32. Drosse I, Volkmer E, Capanna R, De Biase P, Mutschler W, Schieker M (2008) Tissue engineering for bone defect healing: an update on a multi-component approach. Injury 39:S9–S20

    Article  PubMed  Google Scholar 

  33. Stagg J, Lejeune L, Paquin A, Galipeau J (2004) Marrow stromal cells for interleukin-2 delivery in cancer immunotherapy. Hum Gene Ther 15:597–608

    Article  PubMed  CAS  Google Scholar 

  34. Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF (2005) Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 5:1571–1584

    Article  PubMed  CAS  Google Scholar 

  35. Kang R, Ghivizzani SC, Muzzonigro TS, Herndon JH, Robbins PD, Evans CH (2000) The Marshall R. Urist Young Investigator Award. Orthopaedic applications of gene therapy. From concept to clinic. Clin Orthop Relat Res 375:324–337

    Article  PubMed  Google Scholar 

  36. Liu Q, Cen L, Yin S, Chen L, Liu G, Chang J, Cui L (2008) A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and beta-TCP ceramics. Biomaterials 29:4792–4799

    Article  PubMed  CAS  Google Scholar 

  37. Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Zhang Z (2009) Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 30:4522–4532

    Article  PubMed  CAS  Google Scholar 

  38. Kitching R, Qi S, Li V, Raouf A, Vary CP, Seth A (2002) Coordinate gene expression patterns during osteoblast maturation and retinoic acid treatment of MC3T3–E1 cells. J Bone Miner Metab 20:269–280

    Article  PubMed  CAS  Google Scholar 

  39. Kim IS, Song JK, Song YM, Cho TH, Lee TH, Lim SS, Kim SJ, Hwang SJ (2009) Novel effect of biphasic electric current on in vitro osteogenesis and cytokine production in human mesenchymal stromal cells. Tissue Eng Part A 15:2411–2422

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (30772431, 30973342), the Program for New Century Excellent Talents in University (NCET-08-0353), the Science and Technology Commission of Shanghai Municipality (08410706400, S30206, 0952nm04000, 10430710900, 10dz2211600, 10ZR1418100), the Shanghai Rising-Star Program (08QH14017), and the Shanghai Education Committee (07SG19).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyuan Zhang or Xinquan Jiang.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, L., Xu, Y., Chang, Q. et al. Maxillary Sinus Floor Elevation Using BMP-2 and Nell-1 Gene-Modified Bone Marrow Stromal Cells and TCP in Rabbits. Calcif Tissue Int 89, 53–64 (2011). https://doi.org/10.1007/s00223-011-9493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-011-9493-1

Keywords

Navigation