Skip to main content
Log in

Studying Variations in Bone Composition at Nano-Scale Resolution: A Preliminary Report

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bone has a hierarchical structure extending from the micrometer to the nanometer scale. We report here the first analysis of non-human primate osteonal bone obtained using a spectrometer coupled to an AFM microscope (AFM-IR), with a resolution of 50–100 nm. Average spectra correspond to those observed with conventional FTIR spectroscopy. The following validated FTIR parameters were calculated based on intensities observed in scans covering ~60 µm from the osteon center: mineral content (1030/1660 cm−1), crystallinity (1030/1020 cm−1), collagen maturity (1660/1690 cm−1), and acid phosphate content (1128/1096 cm−1). A repeating pattern was found in most of these calculated IR parameters corresponding to the reported inter- and intra-lamellar spacing in human bone, indicating that AFM-IR measurements will be able to provide novel compositional information on the variation in bone at the nanometer level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bouxsein ML, Seeman E (2009) Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol 23:741–753

    Article  PubMed  Google Scholar 

  2. Gourion-Arsiquaud S, Allen MR, Burr DB, Vashishth D, Tang SY, Boskey AL (2010) Bisphosphonate treatment modifies canine bone mineral and matrix properties and their heterogeneity. Bone 46:666–672

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Boskey AL, Spevak L, Weinstein RS (2009) Spectroscopic markers of bone quality in alendronate-treated postmenopausal women. Osteoporos Int 20:793–800

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Donnelly E, Meredith DS, Nguyen JT, Gladnick BP, Rebolledo BJ, Shaffer AD, Lorich DG, Lane JM, Boskey AL (2012) Reduced cortical bone compositional heterogeneity with bisphosphonate treatment in postmenopausal women with intertrochanteric and subtrochanteric fractures. J Bone Miner Res 27:672–678

    Article  PubMed  CAS  Google Scholar 

  5. Gourion-Arsiquaud S, Lukashova L, Power J, Loveridge N, Reeve J, Boskey AL (2013) Fourier transform infrared imaging of femoral neck bone: reduced heterogeneity of mineral-to-matrix and carbonate-to-phosphate and more variable crystallinity in treatment-naive fracture cases compared with fracture-free controls. J Bone Miner Res 28:150–161

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Bala Y, Farlay D, Chapurlat RD, Boivin G (2011) Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol 165:647–655

    Article  PubMed  CAS  Google Scholar 

  7. Zoehrer R, Roschger P, Paschalis EP, Hofstaetter JG, Durchschlag E, Fratzl P, Phipps R, Klaushofer K (2006) Effects of 3- and 5-year treatment with risedronate on bone mineralization density distribution in triple biopsies of the iliac crest in postmenopausal women. J Bone Miner Res 21:1106–1112

    Article  PubMed  CAS  Google Scholar 

  8. Juillard A, Falgayrac G, Cortet B, Vieillard MH, Azaroual N, Hornez JC, Penel G (2010) Molecular interactions between zoledronic acid and bone: an in vitro Raman microspectroscopic study. Bone 47:895–904

    Article  PubMed  CAS  Google Scholar 

  9. Misof BM, Roschger P, Gabriel D, Paschalis EP, Eriksen EF, Recker RR, Gasser JA, Klaushofer K (2013) Annual intravenous zoledronic acid for 3 years increased cancellous bone matrix mineralization beyond normal values in the HORIZON biopsy cohort. J Bone Miner Res 28:442–448

    Article  PubMed  CAS  Google Scholar 

  10. McCreadie BR, Morris MD, Chen TC, Sudhaker Rao D, Finney WF, Widjaja E, Goldstein SA (2006) Bone tissue compositional differences in women with and without osteoporotic fracture. Bone 39:1190–1195

    Article  PubMed  CAS  Google Scholar 

  11. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    Article  PubMed  CAS  Google Scholar 

  12. Amarie S, Zaslansky P, Kajihara Y, Griesshaber E, Schmahl WW, Keilmann F (2012) Nano-FTIR chemical mapping of minerals in biological materials. Beilstein J Nanotechnol 3:312–323

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Kjoller K, Felts JR, Cook D, Prater CB, King WP (2010) High-sensitivity nanometer-scale infrared spectroscopy using a contact mode microcantilever with an internal resonator paddle. Nanotechnology. 21:185705

    Article  PubMed  CAS  Google Scholar 

  14. Felts JR, Cho H, Yu MF, Bergman LA, Vakakis AF, King WP (2013) Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Rev Sci Instrum 84:023709

    Article  PubMed  Google Scholar 

  15. Dazzi A, Prazeres R, Glotin F, Ortega JM (2005) Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt Lett 30:2388–2390

    Article  PubMed  CAS  Google Scholar 

  16. Dazzi A, Prater DB, Hu Q, Chase DB, Rabolt JF, Marcott C (2012) Combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl Spectrosc 66:1365–1384

    Article  PubMed  CAS  Google Scholar 

  17. Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, van der Meulen MC, Boskey AL (2009) Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 24:1271–1281

    Article  PubMed  PubMed Central  Google Scholar 

  18. Erben RG (1997) Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem 45:307–313

    Article  PubMed  CAS  Google Scholar 

  19. Aparicio S, Doty SB, Camacho NP, Paschalis EP, Spevak L, Mendelsohn R, Boskey A (2002) Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy. Calcif Tissue Int 70:422–429

    Article  PubMed  CAS  Google Scholar 

  20. Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey A (2013) Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int 92:418–428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Giraud-Guille M (1988) Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif Tissue Int 42:167–180

    Article  PubMed  CAS  Google Scholar 

  22. Weiner S, Traub W, Wagner HD (1999) Lamellar bone structure-function relations. J Struct Biol 126:241–255

    Article  PubMed  CAS  Google Scholar 

  23. Rubin MA, Jasiuk I (2005) The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36:653–664

    Article  PubMed  Google Scholar 

  24. Marotti G, Ferretti M, Palumbo C (2013) The problem of bone lamellation: an attempt to explain different proposed models. J Morphol 274:543–550

    Article  PubMed  CAS  Google Scholar 

  25. Paschalis EP, Glass EV, Donley DW, Eriksen EF (2005) Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 90:4644–4649

    Article  PubMed  CAS  Google Scholar 

  26. Spalazzi JP, Boskey AL, Pleshko N, Lu HH (2013) Quantitative mapping of matrix content and distribution across the ligament-to-bone insertion. PLoS One 8:e74349

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Lattermann A, Matthäus C, Bergner N, Beleites C, Romeike BF, Krafft C, Brehm BR, Popp J (2013) Characterization of atherosclerotic plaque depositions by Raman and FTIR imaging. J Biophotonics 6:110–121

    Article  PubMed  CAS  Google Scholar 

  28. Boskey AL, Verdelis K, Spevak L, Lukashova L, Beniash E, Yang X, Cabral WA, Marini JC (2013) Mineral and matrix changes in Brtl/+ teeth provide insights into mineralization mechanisms. Biomed Res Int 2013:295812

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Data for this study were collected at Anasys Instruments, Santa Barbara, CA. The study was supported by NIH grant AR041325. The authors are grateful to Dr. Judah Gerstein for editing the manuscript.

Conflict of Interest

Curt Marcott is a scientific advisor for Anasys Instruments; Qichi Hu is an employee of Anasys Instruments; Samuel Gourion-Arsiquaud and Adele Boskey have no conflicts of interest.

Human and Animal Rights and Informed Consent

The animal was from the colony at the Southwest National Primate Research Center/Southwest Foundation for Biomedical Research (SNPRC/SFBR, San Antonio, TX), and all procedures during its life at SNPRC/SFBR were approved by the Institutional Animal Care and Use Committee (IACUC) in accordance with established guidelines. The IACUC of the Hospital for Special Surgery approved the use of these biopsies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adele L. Boskey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourion-Arsiquaud, S., Marcott, C., Hu, Q. et al. Studying Variations in Bone Composition at Nano-Scale Resolution: A Preliminary Report. Calcif Tissue Int 95, 413–418 (2014). https://doi.org/10.1007/s00223-014-9909-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-014-9909-9

Keywords

Navigation