Skip to main content

Advertisement

Log in

Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran)

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Scleractinian coral species harbour communities of photosynthetic taxa of the genus Symbiodinium. As many as eight genetic clades (A, B, C, D, E, F, G and H) of Symbiodinium have been discovered using molecular biology. These clades may differ from each other in their physiology, and thus influence the ecological distribution and resilience of their host corals to environmental stresses. Corals of the Persian Gulf are normally subject to extreme environmental conditions including high salinity and seasonal variation in temperature. This study is the first to use molecular techniques to identify the Symbiodinium of the Iranian coral reefs to the level of phylogenetic clades. Samples of eight coral species were collected at two different depths from the eastern part of Kish Island in the northern Persian Gulf, and Larak Island in the Strait of Hormuz. Partial 28S nuclear ribosomal (nr) DNA of Symbiodinium (D1/D2 domains) were amplified by polymerase chain reaction (PCR). PCR products were analyzed using single stranded conformational polymorphism and phylogenetic analyses of the LSU DNA sequences from a subset of the samples. The results showed that Symbiodinium populations were generally uniform among and within the populations of eight coral species studied, and there are at least two clades of Symbiodinium from Kish and Larak islands. Clade D was detected from eight of the coral species while clade C was found in two of species only (one species hosted two clades simultaneously). The dominance of clade D might be explained by high temperatures or the extreme temperature variation, typical of the Persian Gulf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Baker AC (1999) Symbiosis ecology of reef-building corals. PhD dissertation, University of Miami, 120 pp

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral–algal symbiosis: diversity, ecology and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC, Rowan R (1997) Diversity of symbiotic dinoflagellates (zooxanthellae) in scleractinian corals of the Caribbean and Eastern Pacific. In: Lessios HA, MacIntyre IG (eds) Proceedings of the 8th international coral reef symposium, vol 2. Tropical Research Institute, Balboa, Panama, pp 1301–1306

  • Baker AC, Rowan R, Knowlton N (1997) Symbiosis ecology of two Caribbean acroporid corals. In: Lessios HA, MacIntyre IG (eds) Proceedings of the 8th international coral reef symposium, vol 2. Smithsonian Tropical Research Institute, Balboa, Panama, pp 1295–1300

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741

    Article  CAS  Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism: a testable hypothesis. Bioscience 43:320–326

    Article  Google Scholar 

  • Chen CA, Lam KK, Nakano Y, Tsai WS (2003) Stable association of a stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperate tolerant coral Oulastrea crispata, (Scleractinia; Faviidae) in subtropical nonreefal coral communities. Zool Stud 42:540–550

    Google Scholar 

  • Coles SL, Fadlallah YH (1991) Reef coral survival and mortality at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs 9:231–237

    Article  Google Scholar 

  • Diekmann OE, Olsen JL, Stam WT, Bak RPM (2003) Genetic variation within Symbiodinium clade B from the coral genus Madracis in the Caribbean (Netherlands Antilles). Coral Reefs 22:29–33

    Google Scholar 

  • Downing N (1985) Coral reef communities in an extreme environment: the northwest Arabian Gulf. In: Gabrie C, Salvat B, Lacroix C, Toffart JL (eds) Proceedings of the 5th international coral reef congress, vol 6, Antenne Museum-EPHE Moorea, Tahiti, French Polynesia, pp 343–348

  • Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen JH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palaun reefs with contrasting bleaching temperature and shading histories. Mol Ecol 13:2445–2458

    Article  CAS  Google Scholar 

  • Fatemi SMR, Shokri MR (2001) Iranian coral reefs status with particular reference to Kish Island, Persian Gulf. In: proceedings of international coral reef initiative (ICRI) regional workshop for the Indian Ocean, Maputo, Mozambique

  • Glynn PW, Mate JL, Baker AC, Calderón MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño-Southern oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 events. Bull Mar Sci 69:79–109

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching, and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Smith J (1989) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol 129:279–303

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jones RJ, Ward S, Loh WK (2002) Is coral bleaching really adaptive? Nature 415:601–602

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B Biol Sci 271:1757–1763

    Article  CAS  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Kinzie RA, Takayama M, Santos S, Coffroth MA (2001) The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol Bull 200(1):51–58

    Article  Google Scholar 

  • LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a "species" level marker. J. Phycol 37:866–880

    Article  CAS  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    Article  CAS  Google Scholar 

  • Loh WKW, Carter D, Hoegh-Guldberg O (1998) Diversity of zooxanthellae from scleractinian corals of One Tree Island (The Great Barrier Reef). In: Greenwood JG, Hall NJ (eds) Proceedings of the Australian Coral Reef Society’s 75th anniversary, Heron Island-GBR. School of Marine Science, University of Queensland, Brisbane, pp 141–149

  • Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107

    Article  Google Scholar 

  • Muscatine L, Porter J (1977) Reef corals: mutualistic symbioses adapted to nutrient poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond Ser B 222:181–202

    Article  CAS  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  Google Scholar 

  • Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078

    Article  Google Scholar 

  • Pochon X, LaJeunesse TC, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27

    Article  Google Scholar 

  • Posada D, Crandall KL (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  Google Scholar 

  • Reynolds R (1993) Physical oceanographic of the Gulf, Strait of Hormuz, and the Gulf of Oman: results from the Mt. Michael Expedition. Mar Pollut Bull 27:35–59

    Article  Google Scholar 

  • Reimer AA (1971) Observations on the relationship between several species of tropical zoanthids (Zoanthidae, Coelenterata) and their zooxanthellae. J Exp Mar Biol Ecol 7:207–217

    Article  Google Scholar 

  • Riegl B (1999) Corals in a non-reef setting in the southern Arabian Gulf (Dubai, UAE): fauna and community structure in response to recurring mass mortality. Coral Reefs 18:63–73

    Article  Google Scholar 

  • Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldberg O (2001) Latitudinal variability in symbiont specifity within the widespread scleractinian coral Plesiastrea versipora. Mar Biol 138:1175–1181

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  Google Scholar 

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1991a) A molecular genetic classification of zooxanthellae and the evolution of animal–algal symbiosis. Science 251:1348–1351

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1991b) A molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    Article  CAS  Google Scholar 

  • Rowan R, Powers DA (1992) Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Natl Acad Sci USA 89:3639–3643

    Article  CAS  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  CAS  Google Scholar 

  • Santos SR, Taylor DJ, Kinzie RA, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23s)-rDNA sequences. Mol Phylogenet Evol 23:97–111

    Article  CAS  Google Scholar 

  • Santos SR, Kinzie RA III, Sakai K, Coffroth MA (2003) Molecular characterization of nuclear small subunit (18S)-rDNA pseudogenes in a symbiotic dinoflagellate (Symbiodinium, Dinophyta). J Eukaryot Microbiol 50:417–421

    Article  CAS  Google Scholar 

  • Schwieger F, Tebbe CC (1998) A new approach to utilize PCR-Single-Stranded-Conformational-Polymorphism for 16S rRNA gene-based microbial community analysis. Appl Environ Microbiol 64:4870–4876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 60:82–92

    Article  Google Scholar 

  • Shinn EA (1976) Coral reef recovery in Florida and the Persian Gulf. Environ Geol 1:241–254

    Article  Google Scholar 

  • Shokri MR, Fatemi SMR, Crosby MP (2005) The status of butterflyfishes (Chaetodontidae) in the northern Persian Gulf, I.R. Iran. Mar Freshw Ecosyst 15:S91–S99

    Article  Google Scholar 

  • Steen RG, Muscatine L (1987) Low temperature evoke rapid exocytosis symbiotic algae by a sea anemone. Biol Bull 172:246–263

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4.0b10, Sinauer Associates, Sunderland

    Google Scholar 

  • Tchernov D, Gorbunov MY, deVargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006) Multi-year, seasonal genotypic surveys of coral-algal symbiosis reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Trench RK (1979) The cell biology of plant–animal symbiosis. Annu Rev Plant Physiol 30:485–532

    Article  CAS  Google Scholar 

  • Trench RK (1986) Dinoflagellates in non-parasitic symbioses. In: Taylor FJR (ed) Biology of dinoflagellates. Blackwell, Oxford, pp 530–570

    Google Scholar 

  • Trench RK (1988) Specificity in dinomastigote marine invertebrate symbiosis: an evaluation of hypotheses of mechanisms involved in producing specificity. NATO ASI Ser H 17:326–346

    Google Scholar 

  • Ulstrup KE, van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484

    Article  CAS  Google Scholar 

  • van Oppen MJH (2004) Mode of zooxanthellae transmission does not affect zooxanthellae diversity in acroporid corals. Mar Biol 144:1–7

    Article  Google Scholar 

  • van Oppen MJH, Palastra FP, Piquet AMT, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc Lond Ser B 268:1759–1767

    Article  Google Scholar 

  • van Oppen MJH, Mahiny A, Done T (2005) Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs 24:428–487

    Google Scholar 

  • Visram S, Obura DO, Wiedenmann J, Douglas AE (2006) The diversity of zooxanthellae (Symbiodinium) in Kenyan corals and Mediterranean sea anemones. Coral Reefs 25:172–176

    Article  Google Scholar 

  • Wilkinson C (2000) The 1997–98 mass coral bleaching and mortality events: 2 years on. In: Wilkinson CR (ed) Status of coral reefs of the world: 2000. Australian Institute of Marine Science, Townsville, pp 21–34

    Google Scholar 

  • Wilson SS, Fatemi MR, Shokri MR, Claereboudt M (2002) Status of coral reefs of the Persian/Arabian Gulf and Arabian Sea region. In: Wilkinson CR (ed) Status of coral reefs of the world: 2002. GCRMN Report, Australian Institute of Marine Science, Townsville, pp 53–62

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank first the Marine Research Bureau of Deparment of the Environment of Iran for financial support of this study, Also the Centre for Marine Studies, University of Queensland, Australia and Cellular and Molecular Biology Research Center, Shahid Beheshti Medical School, Tehran, Islamic Republic of Iran, and in particular Dr. B. Kazemi, N. Seyed and M. Bandehpoor for laboratory assistant of this research. PGM would like to express special thanks to M. R. Shokri for filed assistance and useful discussion. Collection of coral samples complied with the environmental protection laws of the Islamic Republic of Iran. We thank the three anonymous reviewers who provided useful advice to improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pargol Ghavam Mostafavi.

Additional information

Communicated by O. Kinne.

Publication of this article was held up owing to technical problems. The publisher apologizes sincerely for this lengthy delay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghavam Mostafavi, P., Fatemi, S.M.R., Shahhosseiny, M.H. et al. Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran). Mar Biol 153, 25–34 (2007). https://doi.org/10.1007/s00227-007-0796-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0796-8

Keywords

Navigation