Skip to main content

Advertisement

Log in

A three-isotope approach to disentangling the diet of a generalist consumer: the yellow-legged gull in northwest Spain

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The widespread omnivory of consumers and the trophic complexity of marine ecosystems make it difficult to infer the feeding ecology of species. The use of stable isotopic analysis plays a crucial role in elucidating trophic interactions. Here we analysed δ15N, δ13C and δ34S in chick feathers, and we used a Bayesian triple-isotope mixing model to reconstruct the diet of a generalist predator, the yellow-legged gull (Larus michahellis) that breeds in the coastal upwelling area off northwest mainland Spain. The mixing model indicated that although chicks from all colonies were fed with a high percentage of fish, there are geographical differences in their diets. While chicks from northern colonies consume higher percentages of earthworms, refuse constitutes a more important source in the diet of chicks from western colonies. The three-isotope mixing model revealed a heterogeneity in foraging habitats that would not have been apparent if only two stable isotopes had been analysed. Moreover, our work highlights the potential of adding δ34S for distinguishing not only between terrestrial and marine prey, but also between different marine species such as fish, crabs and mussels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Annett C, Pierotti R (1999) Long-term reproductive output in western gulls: consequences of alternate tactics in diet choice. Ecology 80:288–297

    Article  Google Scholar 

  • Bearhop S, Waldron S, Votier SC, Furness RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol Biochem Zool 75:451–458

    Article  CAS  PubMed  Google Scholar 

  • Bode A, Carrera P, Lens S (2003) The pelagic foodweb in the upwelling ecosystem of Galicia (NW Spain) during spring: natural abundance of stable carbon and nitrogen isotopes. ICES J Mar Sci 60:11–22

    Article  CAS  Google Scholar 

  • Bosch M, Oro D, Ruiz X (1994) Dependence of yellow-legged gulls (Larus cachinnans) on food from human activity in two western Mediterranean colonies. Avocetta 18:135–139

    Google Scholar 

  • Carabel S, Godínez-Dominguez E, Verísimo P, Fernández L, Freire J (2006) An assessment of sample processing methods for stable isotope analyses of marine food webs. J Exp Mar Biol Ecol 336(2):254–261

    Article  CAS  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2008) Dietary shift of an invasive predator: rats, seabirds and sea turtles. J Appl Ecol 45:428–437

    Article  PubMed  Google Scholar 

  • Duhem C, Vidal E, Roche P, Legrand J (2005) How is the diet of yellow-legged gull chicks influenced by parents’ accessibility to landfills? Waterbirds 28(1):46–52

    Article  Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Forero MG, Bortolotti GR, Hobson KA, Donazar JA, Bertelloti M, Blanco G (2004) High trophic overlap within the seabird community of Argentinean Patagonia: a multiscale approach. J Anim Ecol 73:789–801

    Article  Google Scholar 

  • Gannes LZ, del Rio CM, Koch P (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comp Biochem Physiol A 119:725–737

    Article  CAS  Google Scholar 

  • Glutz von Blotzheim UN, Bauer KM (1982) Handbuch der Vogel Mitteleuropas, Band 8/1 (Charadriiformes). Akademische Verlagsgesellschatt, Wiesbaden

  • Hebert CE, Bur M, Sherman D, Shutt JL (2008) Sulfur isotopes link overwinter habitat use and breeding condition in Double-crested Cormorants. Ecol Appl 18:561–567

    Article  PubMed  Google Scholar 

  • Hobson KA (1993) Trophic relationships among high arctic seabirds: insights from tissue-dependent stable-isotope models. Mar Ecol Prog Ser 95:7–18

    Article  Google Scholar 

  • Hobson KA, Bairlein F (2003) Isotopic fractionation and turnover in captive Garden Warblers (Sylvia borin): implications for delineating dietary and migratory associations in wild passerines. Can J Zool 81:1630–1635

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor 94:189–197

    Article  Google Scholar 

  • Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using delta-13C and delta-15 N analysis. Mar Ecol Prog Ser 84:9–18

    Article  CAS  Google Scholar 

  • Hobson KA, Piatt JF, Pitocchelli J (1994) Using stable isotopes to determine seabird trophic relationships. J Anim Ecol 63:786–798

    Article  Google Scholar 

  • Hobson KA, Hughes KD, Ewins PJ (1997) Using stable-isotope analysis to identify endogenous and exogenous sources of nutrients in eggs of migratory birds: applications to Great Lakes contaminants research. Auk 114:467–478

    Google Scholar 

  • Hückstädt LA, Rojas CP, Antezana T (2007) Stable isotope analysis reveals pelagic foraging by the Southern sea lion in central Chile. J Exper Mar Bio Ecol 347:123–133

    Google Scholar 

  • Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461

    Article  Google Scholar 

  • Inger R, Ruxton GD, Newton J, Colhoun K, Robinson JA, Jackson AL, Bearhop S (2006a) Temporal and intrapopulation variation in prey choice of wintering geese determined by stable isotope analysis. J Anim Ecol 75:1190–1200

    Article  PubMed  Google Scholar 

  • Inger R, Ruxton GD, Newton J, Colhoun K, Mackie K, Robinson JA, Bearhop S (2006b) Using daily ration models and stable isotope analysis to predict biomass depletion by herbivores. J Anim Ecol 43:1022–1030

    Article  Google Scholar 

  • Isenmann P (1976) La décharge d’ordures ménagères de Marseille comme habitat d’alimentation de la Mouette rieuse Larus ridibundus. Alauda 46(2):131–146

    Google Scholar 

  • Knoff AJ, Macko SA, Erwin RM (2001) Diets of nesting Laughing Gulls (Larus atricilla) at the Virginia coast reserve: observations from stable isotope analysis. Isotopes Environ Health Stud 37:67–88

    Article  CAS  PubMed  Google Scholar 

  • Knoff AJ, Macko SA, Erwin RM, Brown KM (2002) Stable isotope analysis of temporal variation in the diets of pre-fledged Laughing Gulls. Waterbirds 25:142–148

    Article  Google Scholar 

  • Laurand S, Riera P (2006) Trophic ecology of the supralittoral rocky shore (Roscoff, France): a dual stable isotope (δ13C, δ 15N) and experimental approach. J Sea Res 56(1):27–36

    Article  CAS  Google Scholar 

  • Lewis S, Wanless S, Wright PJ, Harris MP, Bull J, Elston DA (2001) Diet and breeding performance of black-legged kittiwakes Rissa tridactyla at a North Sea colony. Mar Ecol Prog Ser 221:277–284

    Article  Google Scholar 

  • Link J (2002) Does food web theory work for marine ecosystems? Mar Ecol Prog Ser 230:1–9

    Article  Google Scholar 

  • McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798

    Article  CAS  Google Scholar 

  • Methratta ET (2004) Top-down and bottom-up factors in tidepool communities. J Exp Mar Biol Ecol 299:77–96

    Article  Google Scholar 

  • Moore JW, Semmens BX (2008) Incorporating uncertainty and prior information into stable isotope mixing models. Ecol Lett 11:470–480

    Article  PubMed  Google Scholar 

  • Munilla I (1997a) Estudio de la población y la ecología trófica de la gaviota patiamarilla (Larus cachinnans) en Galicia. Tesis Doctoral, Universidade de Santiago de Compostela. Santiago de Compostela, 328 pp

  • Munilla I (1997b) Henslow’s swimming crab (Polybius henslowii) as an important food for yellow-legged gulls (Larus cachinnans) in NW Spain. ICES J Mar Sci 55:631–634

    Article  Google Scholar 

  • Navarro J, Louzao M, Igual JM, Oro D, Delgado A, Arcos JM, Genovart M, Hobson KA, Forero MG (2009) Seasonal changes in the diet of a critically endangered seabird and the importance of trawling discards. Mar Biol 156:2571–2578

    Google Scholar 

  • Parnell A, Inger R, Bearhop S, Jackson AL (2008) SIAR: stable isotope analysis in R. http://cran.r-project.org/web/packages/siar/index.html

  • Pedrocchi V, Oro D, Gonzalez-Solis J (1996) Differences between diet of adult and chick Audouin’s gulls Larus audouinii at the Chafarinas Islands, SW Mediterranean. Ornis Fenn 73:124–130

    Google Scholar 

  • Peterson BJ, Howarth RW, Garritt RH (1985) Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs. Science 227:1361–1363

    Article  PubMed  CAS  Google Scholar 

  • Phillips DL (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127:166–170

    Article  Google Scholar 

  • Phillips DL, Gregg JW (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127:171–179 (see also erratum, Oecologia 128:204)

    Article  Google Scholar 

  • Phillips DL, Jillian WG (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269

    Article  PubMed  Google Scholar 

  • Phillips DL, Koch P (2002) Incorporating concentration dependence in stable isotope mixing models. Oecologia 130:114–125

    Google Scholar 

  • Phillips DL, Newsome SD, Gregg JW (2005) Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520–524

    Article  PubMed  Google Scholar 

  • Polis GA, Hurd SD (1996) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396–423

    Article  Google Scholar 

  • Polis GA, Strong DR (1996) Food web complexity and community dynamics. Am Nat 147:813–846

    Article  Google Scholar 

  • Pons JM (1992) Effects of changes in the availability of human refuse on breeding parameters in a herring gull Larus argentatus population in Brittany, France. Ardea 80:143–150

    Google Scholar 

  • Quillfeldt P, McGill RAR, Furness RW (2005) Diet and foraging areas of Southern Ocean seabirds and their prey inferred from stable isotopes: review and case study of Wilson’s storm-petrel. Mar Ecol Prog Ser 295:295–304

    Article  CAS  Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Ramos R, Ramírez F, Sanpera C, Jover L, Ruiz X (2009a) Feeding ecology of yellow-legged gulls (Larus michahellis) in the Western Mediterranean: a comparative assessment using conventional and isotopic methods. Mar Ecol Prog Ser 377:289–296

    Article  Google Scholar 

  • Ramos R, Ramírez F, Jover J, Ruiz X (2009b) Diet of yellow-legged gull (Larus michahellis) chicks along the Spanish Western Mediterranean coast: the relevance of refuse dumps. J Ornithol 150:265–272

    Article  Google Scholar 

  • Sanpera C, Ruiz X, Moreno R, Jover L, Waldron S (2007) Mercury and stable isotopes in feathers of Audouin’s gull as indicators of feeding habits and migratory connectivity. Condor 109:268–275

    Article  Google Scholar 

  • Schmutz JA, Hobson KA (1998) Geographic, temporal, and age-specific variation in diets of Glaucous Gulls in Western Alaska. Condor 100:119–130

    Article  Google Scholar 

  • Thompson DR, Lilliendahl K, Solmundsson J, Furness RW, Waldron S, Phillips RA (1999) Trophic relationships among six species of Icelandic seabirds as determined through stable isotope analysis. Condor 101:898–903

    Article  Google Scholar 

  • Urton EJM, Hobson KA (2005) Intrapopulation variation in gray wolf isotope (δ15N and δ13C) profiles: implications for the ecology of individuals. Oecologia 145(2):316–325

    Article  Google Scholar 

  • Votier SC, Bearhop S, MacCormick A, Ratcliffe N, Furness RW (2003) Assessing the diet of Great Skuas, Catharacta skua, using five different techniques. Polar Biol 26:20–26

    Google Scholar 

Download references

Acknowledgments

Thanks are given to the Conselleria de Medio Ambiente (“Xunta de Galicia” autonomous regional government) and to the Parque Nacional de las Illas Atlánticas de Galicia, for the facilities to develop this work. We would especially like to thank C. Pérez and C. Díez (University of Vigo, Spain) for help with the collection of feathers, and M. Mulet, M. Salvande Fraga and S. Baños for help with local prey sampling. We also thank to P. Teixidor, P. Rubio, R. Roca, and E. Aracil of the Serveis Científico-Tècnics for their help in stable isotope analysis. R. Moreno was supported by an FPU grant (Ministerio de Educación y Ciencia, Spain). Funding for this work was provided by project VEM2004-08524 from the Spanish Ministerio de Educación y Ciencia and CGL2008-05448-C02-C01 and CGL2008-05448-C02-C02 from the Spanish Ministerio de Ciencia e Innovación.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Moreno.

Additional information

Communicated by U. Sommer.

This manuscript is dedicated to Xavier Ruiz who contributed to this paper and deceased on April 27, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, R., Jover, L., Munilla, I. et al. A three-isotope approach to disentangling the diet of a generalist consumer: the yellow-legged gull in northwest Spain. Mar Biol 157, 545–553 (2010). https://doi.org/10.1007/s00227-009-1340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-009-1340-9

Keywords

Navigation