Skip to main content

Advertisement

Log in

PSII activity and pigment dynamics of Symbiodinium in two Indo-Pacific corals exposed to short-term high-light stress

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This study examined the capacity for photoprotection and repair of photo-inactivated photosystem II in the same Symbiodinium clade associated with two coexisting coral species during high-light stress in order to test for the modulation of the symbiont’s photobiological response by the coral host. After 4 days exposure to in situ irradiance, symbionts of the bleaching-sensitive Pocillopora damicornis showed rapid synthesis of photoprotective pigments (by 44 %) and strongly enhanced rates of xanthophyll cycling (by 446 %) while being insufficient to prevent photoinhibition (sustained loss in F v/F m at night) and loss of symbionts after 4 days. By contrast, Pavona decussata showed no significant changes in F v/F m, symbiont density or xanthophyll cycling. Given the association with the same Symbiodinium clade in both coral species, our findings suggest that symbionts in the two species examined may experience different in hospite light conditions as a result of different biometric properties of the coral host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ambarsari I, Brown B, Barlow R, Britton G, Cummings D (1997) Fluctuations in algal chlorophyll and carotenoid pigments during solar bleaching in the coral Goniastrea aspera at Phuket, Thailand. Mar Ecol Prog Ser 159:303–307. doi:10.3354/meps159303

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    Article  CAS  Google Scholar 

  • Bachmann K, Ebbert V, Adams W III, Verhoeven A, Logan B, Demmig-Adams B (2004) Effects of lincomycin on PSII efficiency, non-photochemical quenching, D1 protein and xanthophyll cycle during photoinhibition and recovery. Funct Plant Biol 31:803–813. doi:10.1071/FP04022

    Article  CAS  Google Scholar 

  • Baird A, Bhagooli R, Ralph P, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20. doi:10.1016/j.tree.2008.09.005

    Article  Google Scholar 

  • Barbrook AC, Visram S, Douglas AE, Howe CJ (2006) Molecular diversity of dinoflagellate symbionts of Cnidaria: the psbA minicircle of Symbiodinium. Protist 157:159–171. doi:10.1016/j.protis.2005.12.002

    Article  CAS  Google Scholar 

  • Berkelmans R, van Oppen M (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312. doi:10.1098/rspb.2006.3567

    Article  Google Scholar 

  • Bhagooli R, Hidaka M (2003) Comparison of stress susceptibility of in hospite and isolated zooxanthellae among five coral species. J Exp Mar Biol Ecol 291:181–197

    Article  Google Scholar 

  • Bhagooli R, Hidaka M (2004) Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp Biochem Physiol A: Mol Integr Physiol 137:547–555. doi:10.1016/j.cbpb.2003.11.008

    Article  Google Scholar 

  • Brown B, Ambarsari I, Warner M, Fitt W, Dunne R, Gibb S, Cummings D (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photoprotection. Coral Reefs 18:99–105. doi:10.1007/s003380050163

    Article  Google Scholar 

  • Brown B, Downs C, Dunne R, Gibb S (2002) Preliminary evidence for tissue retraction as a factor in photoprotection of corals incapable of xanthophyll cycling. J Exp Mar Biol Ecol 277:129–144. doi:10.1016/S0022-0981(02)00305-2

    Article  CAS  Google Scholar 

  • Campbell DA, Tyystjärvi E (2012) Parameterization of photosystem II photoinactivation and repair. Biochim Biophys Acta 1817:258–265. doi:10.1016/j.bbabio.2011.04.010

    Article  CAS  Google Scholar 

  • Coffroth M, Santos S (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34. doi:10.1016/j.protis.2005.02.004

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21. doi:10.1111/j.1469-8137.2006.01835.x

    Article  CAS  Google Scholar 

  • Dimond JL, Holzman BJ, Bingham BL (2012) Thicker host tissues moderate light stress in a cnidarian endosymbiont. J Exp Biol 215:2247–2254. doi:10.1242/jeb.067991

    Article  Google Scholar 

  • Dove S, Hoegh-Guldberg O, Ranganathan S (2001) Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19:197–204. doi:10.1007/PL00006956

    Article  Google Scholar 

  • Dove S, Ortiz J, Enríquez S, Fine M, Fisher P, Iglesias-Prieto R, Thornhill D, Hoegh-Guldberg O (2006) Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158. doi:10.4319/lo.2006.51.2.1149

    Article  Google Scholar 

  • Dunlap WC, Shick J (1998) Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J Phycol 34:418–430. doi:10.1046/j.1529-8817.1998.340418.x

    Article  Google Scholar 

  • Edelman M, Mattoo AK (2008) D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res 98:609–620. doi:10.1007/s11120-008-9342-x

    Article  CAS  Google Scholar 

  • Ellis RJ (1975) Inhibition of chloroplast protein synthesis by lincomycin and 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide. Phytochem 14:89–93

    Article  CAS  Google Scholar 

  • Enríquez S, Méndez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032. doi:10.4319/lo.2005.50.4.1025

    Article  Google Scholar 

  • Fisher PL, Malme MK, Dove S (2012) The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs 31:473–485. doi:10.1007/s00338-011-0853-0

    Article  Google Scholar 

  • Fitt WK, Spero HJ, Halas J, White MW, Porter JW (1993) Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean “bleaching event”. Coral Reefs 12:57–64. doi:10.1007/bf00302102

    Article  Google Scholar 

  • Fitt W, Gates R, Hoegh-Guldberg O, Bythell J, Jatkar A, Grottoli A, Gomez M, Fisher P, LaJeunesse T, Pantos O, Iglesias-Prieto R, Franklin D, Rodrigues L, Torregiani J, van Woesik R, Lesser M (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110. doi:10.1016/j.jembe.2009.03.011

    Article  Google Scholar 

  • Franklin DJ, Cedrés CMM, Hoegh-Guldberg O (2006) Increased mortality and photoinhibition in the symbiotic dinoflagellates of the Indo–Pacific coral Stylophora pistillata (Esper) after summer bleaching. Mar Biol 149:633–642. doi:10.1007/s00227-005-0230-z

    Article  Google Scholar 

  • Freudenthal HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle, and morphology. J Eukaryot Microbiol 9:45–52. doi:10.1111/j.1550-7408.1962.tb02579.x

    Article  Google Scholar 

  • Genty B, Briantais J, Baker N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92. doi:10.1016/S0304-4165(89)80016-9

    Article  CAS  Google Scholar 

  • Glynn P (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17. doi:10.1007/BF00303779

    Article  Google Scholar 

  • Gorbunov M, Kolber Z, Lesser M, Falkowski P (2001) Photosynthesis and photoprotection in symbiotic corals. Limnol Oceanogr 46:75–85. doi:10.4319/lo.2001.46.1.0075

    Article  CAS  Google Scholar 

  • Hennige S, Suggett D, Warner M, McDougall K, Smith D (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195

    Article  Google Scholar 

  • Hennige SJ, McGinley MP, Grottoli AG, Warner ME (2011) Photoinhibition of Symbiodinium spp. within the reef corals Montastraea faveolata and Porites astreoides: implications for coral bleaching. Mar Biol 158:2515–2526. doi:10.1007/s00227-011-1752-1

    Article  CAS  Google Scholar 

  • Hill R, Ralph PJ (2005) Diel and seasonal changes in fluorescence rise kinetics of three scleractinian corals. Funct Plant Biol 32:549–559. doi:10.1071/FP05017

    Article  Google Scholar 

  • Hill R, Frankart C, Ralph PJ (2005) Impact of bleaching conditions on the components of non-photochemical quenching in the zooxanthellae of a coral. J Exp Mar Biol Ecol 322:83–92. doi:10.1016/j.jembe.2005.02.011

    Article  CAS  Google Scholar 

  • Hill R, Ulstrup K, Ralph P (2009) Temperature induced changes in thylakoid membrane thermostability of cultured, freshly isolated, and expelled zooxanthellae from scleractinian corals. Bull Mar Sci 85:223–244

    Google Scholar 

  • Hill R, Brown CM, DeZeeuw K, Campbell DA, Ralph PJ (2011) Increased rate of D1 repair in coral symbionts during bleaching is insufficient to counter accelerated photo-inactivation. Limnol Oceanogr 56:139–146. doi:10.4319/lo.2011.56.1.0139

    Article  Google Scholar 

  • Hill R, Larkum AWD, Prášil O, Kramer DM, Szabó M, Kumar V, Ralph PJ (2012) Light-induced dissociation of antenna complexes in the symbionts of scleractinian corals correlates with sensitivity to coral bleaching. Coral Reefs. doi:10.1007/s00338-012-0914-z

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res 50:839–866. doi:10.1071/MF99078

    Article  Google Scholar 

  • Hoegh-Guldberg O (2011) Coral reef ecosystems and anthropogenic climate change. Reg Environ Change 11:215–227. doi:10.1007/s10113-010-0189-2

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jones R (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86. doi:10.3354/meps183073

    Article  Google Scholar 

  • Hoegh-Guldberg O, Salvat B (1995) Periodic mass-bleaching and elevated sea temperatures: bleaching of outer reef slope communities in Moorea, French Polynesia. Mar Ecol Prog Ser 121:181–190. doi:10.3354/meps121181

    Article  Google Scholar 

  • Hoegh-Guldberg O, Smith GJ (1989a) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol 129:279–303. doi:10.1016/0022-0981(89)90109-3

    Article  Google Scholar 

  • Hoegh-Guldberg O, Smith GJ (1989b) Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Mar Ecol Prog Ser 57:173–186. doi:10.4319/lo.2008.53.5.1853

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Beltrán V, LaJeunesse T, Reyes-Bonilla H, Thomé P (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B Biol Sci 271:1757–1763. doi:10.1098/rspb.2004.2757

    Article  CAS  Google Scholar 

  • Jimenez I, Kühl M, Larkum A, Ralph P (2008) Heat budget and thermal microenvironment of shallow-water corals: do massive corals get warmer than branching corals? Limnol Oceanogr 53:1548–1561. doi:10.4319/lo.2008.53.4.1548

    Article  Google Scholar 

  • Jimenez IM, Kühl M, Larkum AW, Ralph PJ (2011) Effects of flow and colony morphology on the thermal boundary layer of corals. J R Soc Interface 8:1785–1795. doi:10.1098/rsif.2011.0144

    Article  Google Scholar 

  • Jimenez IM, Larkum AWD, Ralph PJ, Kühl M (2012) In situ thermal dynamics of shallow water corals is affected by tidal patterns and irradiance. Mar Biol. doi:10.1007/s00227-012-1968-8

    Google Scholar 

  • Jones R (1997) Changes in zooxanthellar densities and chlorophyll concentrations in corals during and after a bleaching event. Mar Ecol Prog Ser 158:51–59. doi:10.3354/meps158051

    Article  Google Scholar 

  • Jones R, Hoegh-Guldberg O, Larkum A, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant, Cell Environ 21:1219–1230. doi:10.1046/j.1365-3040.1998.00345.x

    Article  CAS  Google Scholar 

  • Kaniewska P, Magnusson SH, Anthony KRN, Reef R, Kühl M, Hoegh-Guldberg O (2011) Importance of macro- versus microstructure in modulating light levels inside coral colonies. J Phycol 47:846–860. doi:10.1111/j.1529-8817.2011.01021.x

    Article  Google Scholar 

  • Kirk J (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Krämer W, Caamaño-Ricken I, Richter C, Bischof K (2012) Dynamic regulation of photoprotection determines thermal tolerance of two phylotypes of Symbiodinium clade A at two photon flux densities. Photochem Photobiol 88:398–413. doi:10.1111/j.1751-1097.2011.01048.x

    Article  Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jørgensen BB, Revsbach NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172. doi:10.3354/meps.117159

    Article  Google Scholar 

  • Le Tissier MDA, Brown BE (1996) Dynamics of solar bleaching in the intertidal reef coral Goniastrea aspera at Ko Phuket, Thailand. Mar Ecol Prog Ser 136:235–244. doi:10.3354/meps136235

    Article  Google Scholar 

  • Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 405–419

    Chapter  Google Scholar 

  • Lesser M, Farrell J (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 24:367–377. doi:10.1007/s00338-004-0392-z

    Article  Google Scholar 

  • Lesser M, Gorbunov M (2001) Diurnal and bathymetric changes in chlorophyll fluorescence yields of reef corals measured in situ with a fast repetition rate fluorometer. Mar Ecol Prog Ser 212:69–77. doi:10.3354/meps212069

    Article  CAS  Google Scholar 

  • Lesser M, Stochaj W, Tapley D, Shick J (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232. doi:10.1007/BF00265015

    Article  Google Scholar 

  • Ljung G, Box G (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303. doi:10.1093/biomet/65.2.297

    Article  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131. doi:10.1046/j.1461-0248.2001.00203.x

    Article  Google Scholar 

  • Magalon H, Baudry E, Husté A, Adjeroud M, Veuille M (2006) High genetic diversity of the symbiotic dinoflagellates in the coral Pocillopora meandrina from the South Pacific. Mar Biol 148:913–922. doi:10.1007/s00227-005-0133-z

    Article  Google Scholar 

  • Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861

    Article  Google Scholar 

  • Marsh JA Jr (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263. doi:10.2307/1933661

    Article  Google Scholar 

  • Marshall P, Baird A (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163. doi:10.1007/s003380000086

    Article  Google Scholar 

  • McClanahan TR (2004) The relationship between bleaching and mortality of common corals. Mar Biol 144:1239–1245. doi:10.1007/s00227-003-1271-9

    Article  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world, vol 25., Coral reefsElsevier, New York, pp 75–87

    Google Scholar 

  • Muscatine L, Porter J (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460. doi:10.2307/1297526

    Article  Google Scholar 

  • Nishiyama Y, Allakhverdiev S, Murata N (2006) A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochim Biophys Acta 1757:742–749

    Article  CAS  Google Scholar 

  • Niyogi K (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359. doi:10.1146/annurev.arplant.50.1.333

    Article  CAS  Google Scholar 

  • Pettay DT, Lajeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis. Mol Ecol Notes 7:1271–1274. doi:10.1111/j.1471-8286.2007.01852.x

    Article  CAS  Google Scholar 

  • Pettay DT, Lajeunesse TC (2009) Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D Symbiodinium. Molecular Ecology Resources 9:1022–1025. doi:10.1111/j.1755-0998.2009.02561.x

    Article  CAS  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497. doi:10.1016/j.ympev.2010.03.040

    Article  CAS  Google Scholar 

  • Ragni M, Airs R, Hennige S, Suggett D, Warner M, Geider R (2010) PSII photoinhibition and photorepair in Symbiodinium (Pyrrhophyta) differs between thermally tolerant and sensitive phylotypes. Mar Ecol Prog Ser 406:57–70. doi:10.3354/meps08571

    Article  CAS  Google Scholar 

  • Ralph PJ, Gademann R, Larkum A, Schreiber U (1999) In situ underwater measurements of photosynthetic activity of coral zooxanthellae and other reef-dwelling dinoflagellate endosymbionts. Mar Ecol Prog Ser 180:139–147. doi:10.3354/meps180139

    Article  Google Scholar 

  • Raven J (2011) The cost of photoinhibition. Physiol Plant 142:87–104. doi:10.1111/j.1399-3054.2011.01465.x

    Article  CAS  Google Scholar 

  • Robison J, Warner M (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579. doi:10.1111/j.1529-8817.2006.00232.x

    Article  CAS  Google Scholar 

  • Roth MS, Latz MI, Goericke R, Deheyn DD (2010) Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J Exp Biol 213:3644–3655. doi:10.1242/jeb.040881

    Article  CAS  Google Scholar 

  • Salih A, Larkum A, Cox G, Kühl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 408:850–853

    Article  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) Fluorometry and saturation pulse method: an overview. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, The Netherlands, pp 279–319

  • Six C, Finkel ZV, Irwin AJ, Campbell DA (2007) Light variability illuminates niche-partitioning among marine picocyanobacteria. PLoS ONE 2 doi:10.1371/journal.pone.0001341

  • Smith D, Suggett D, Baker N (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11:1–11. doi:10.1111/j.1529-8817.2003.00895.x

    Article  Google Scholar 

  • Stimson J, Kinzie R III (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74. doi:10.1016/S0022-0981(05)80006-1

    Article  Google Scholar 

  • Stimson J, Sakai K, Sembali H (2002) Interspecific comparison of the symbiotic relationship in corals with high and low rates of bleaching-induced mortality. Coral Reefs 21:409–421. doi:10.1007/s00338-002-0264-3

    Google Scholar 

  • Takahashi S, Badger M (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60. doi:10.1016/j.tplants.2010.10.001

    Article  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182. doi:10.1016/j.tplants.2008.01.005

    Article  CAS  Google Scholar 

  • Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasaki H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255. doi:10.1093/pcp/pch028

    Article  CAS  Google Scholar 

  • Takahashi S, Whitney S, Badger M (2009) Different thermal sensitivity of the repair of photodamaged photosynthetic machinery in cultured Symbiodinium species. Proc Natl Acad Sci USA 106:3237–3242. doi:10.1073/pnas.0808363106

    Article  CAS  Google Scholar 

  • Tchernov D, Gorbunov M, de Vargas C, Narayan Yadav S, Milligan A, Haggblom M, Falkowski P (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535. doi:10.1073/pnas.0402907101

    Article  CAS  Google Scholar 

  • Tyystjärvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 93:2213–2218

    Article  Google Scholar 

  • Ulstrup K, Hill R, van Oppen M, Larkum A, Ralph P (2008) Seasonal variation in the photo-physiology of homogeneous and heterogeneous Symbiodinium consortia in two scleractinian corals. Mar Ecol Prog Ser 361:139–150. doi:10.3354/meps07360

    Article  Google Scholar 

  • Venn A, Wilson M, Trapido-Rosenthal H, Keely B, Douglas A (2006) The impact of coral bleaching on the pigment profile of the symbiotic alga, Symbiodinium. Plant, Cell Environ 29:2133–2142

    Article  CAS  Google Scholar 

  • Wangpraseurt D, Larkum AW, Ralph PJ, Kühl M (2012) Light gradients and optical microniches in coral tissues. Front Microbiol 3:316. doi:10.3389/fmicb.2012.00316

    Google Scholar 

  • Warner M, Berry-Lowe S (2006) Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J Exp Mar Biol Ecol 339:86–95. doi:10.1016/j.jembe.2006.07.011

    Article  CAS  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant, Cell Environ 19:291–299. doi:10.1111/j.1365-3040.1996.tb00251.x

    Article  Google Scholar 

  • Warner M, Fitt W, Schmidt G (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012. doi:10.1073/pnas.96.14.8007

    Article  CAS  Google Scholar 

  • Wright S, Jeffrey S, Mantoura R, Llewellyn C, Bjoernland T, Repeta D, Welschmeyer N (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar Ecol Prog Ser 77:186–196. doi:10.3354/meps077183

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Malin Gustafsson for valuable field assistance and to the staff of Heron Island Research Station for their support. Furthermore, we would like to thank the anonymous reviewers and Dr. David Suggett for their detailed critical comments and suggestions on earlier versions of this paper. This study was financially supported by the Comprehensive Research Funding Programme (CRFP) at the University of Bremen (Project No. 02/115/06). We also thanks support by the Bremen International Graduate School for Marine Sciences (GLOMAR) that is funded by the German Research Foundation (DFG) within the frame of the Excellence Initiative by the German federal and state governments to promote science and research at German universities. Further, this project was supported by means of the Terry Walker Price awarded by the Australian Coral Reef Society (ACRS) to Verena Schrameyer in 2010. Corals were collected under Great Barrier Marine Park Authority (GBRMPA) permit number G09/30854.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiebke E. Krämer.

Additional information

Communicated by M. Kühl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krämer, W.E., Schrameyer, V., Hill, R. et al. PSII activity and pigment dynamics of Symbiodinium in two Indo-Pacific corals exposed to short-term high-light stress. Mar Biol 160, 563–577 (2013). https://doi.org/10.1007/s00227-012-2113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2113-4

Keywords

Navigation