Skip to main content
Log in

Mechanistic models for pool nucleate boiling heat transfer: input and validation

  • Special Issue
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Correlations for nucleate boiling heat transfer should be improved, or in the long term possibly be replaced, by the development of mechanistic simulations that include the non-uniform spacing and variable characteristics of the nucleation sites and non-linear interactions between the sites. This paper discusses the interactions that should be included in simulations and some lessons from a first attempt to validate a particular simulation against experimental spatio-temporal data for wall temperature. Input data for nucleation site positions and characteristics are a particular problem and the prospects for obtaining this data from measurements that are independent of boiling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

D :

Bubble diameter (m)

D o :

[σ/(ρL−ρG)g]0.5

g :

Gravitational acceleration (m/s2)

h :

Height of nucleus (m)

H :

Cavity minimum depth (m)

M :

Mass (kg)

N :

Number of sites

N/A :

Site density (m−2)

p :

Pressure (Pa)

p c :

Critical pressure (Pa)

P5*:

Roughness parameter (m)

q :

Heat flux (W/m2)

R 1 :

Radius of primary bubble (m)

R a :

Average surface roughness (m)

S :

Site separation (m)

t :

Time (s)

t D :

Delay time (s)

t G :

Growth time (s)

t W :

Waiting time (s)

x, y :

Spatial coordinates (m)

β:

Cone half-angle (degree)

ν:

Shape parameter

θ:

Contact angle (degree)

ρG :

Gas density (kg/m3)

ρL :

Liquid density (kg/m3)

σ:

Surface tension (N/m)

σ2 :

Variance

References

  1. Theofanous TG, Tu JP, Dinh AT, Dinh TN (2002) The boiling crisis phenomenon part I: nucleation and nucleate boiling heat transfer. Exp Ther Sci 26:755–792

    Google Scholar 

  2. Honda H, Wei JJ (2002) Enhanced boiling heat transfer from electronic components by use of surface microstructures. In: Proceedings of the international symposium on compact heat exchangers, Grenoble 24 August, pp 65–74

  3. Kunugi T, Saito N, Fujita Y, Serizawa A (2002) Direct numerical simulation of pool and forced convection flow boiling phenomena. In: Proceedings of the 12th international heat transfer conference, vol 3, Grenoble 18–23 August, pp 497–502

  4. Shoji M, Tajima K (1997) Mathematical simulation model of boiling: modes and chaos. In: Proceedings of the engineering foundation conference on convective flow and pool boiling, Irsee, pp 217–222

  5. Kitron A, Elperin T, Tamir A (1991) Stochastic modeling of boiling-site interaction. Phys Rev A44:1237–1246

    Article  Google Scholar 

  6. Mallozzi R, Judd RL, Balakrishnan N (2000) Investigation of randomness, overlap and the interaction of bubbles forming at adjacent nucleation sites in pool boiling. Int J Heat Mass Transfer 43:3317–3330

    Article  MATH  Google Scholar 

  7. Pasamehmetoglu KO, Nelson RA (1991) Cavity-to-cavity interaction in nucleate boiling: the effect of heat conduction within the heater. In: AIChE symposium series (27th national heat transfer conference, Minneapolis), vol 87, pp 342–351

  8. Sadasivan P, Unal C, Nelson RA (1995) Nonlinear aspects of high heat flux nucleate boiling. J Heat Transfer 117:981–989

    Article  Google Scholar 

  9. Shoji M (2004) Studies of boiling chaos: a review. Int J Heat Mass Transfer 47:1105–1128

    Article  Google Scholar 

  10. Gaertner RF, Westwater JW (1960) Population of active sites in nucleate boiling heat transfer. Chem Eng Symp Ser No. 30, 56:39–48

    Google Scholar 

  11. Luke A,, Baumhögger E, Scheunemann P (2001) 3-Dimensional description of the microstructure of heated surfaces in nucleate pool boiling. Multiphase Sci Technol 12:1–13

    Google Scholar 

  12. Kenning DBR (2001) Experimental methods: looking closely at bubble nucleation. Multiphase Sci Technol 13:1–33

    Google Scholar 

  13. Wang CH, Dhir VK (1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J Heat Transfer 115:659–669

    Google Scholar 

  14. Eddington RI, Kenning DBR (1978) The prediction of flow boiling populations from gas bubble nucleation experiments. In: Proceedings of the sixth international heat transfer conference, vol 1, Toronto, pp 275–280

  15. Del Valle MVH, Kenning DBR (1985) Subcooled flow boiling at high heat flux. Int J Heat Mass Transfer 28:1907–1920

    Article  Google Scholar 

  16. Kenning DBR, Kono T, Wienecke M (2001) Investigation of boiling heat transfer by liquid crystal thermography. Exp Thermal Fluid Sci 25:219–229

    Article  Google Scholar 

  17. Pinto AD, Gorenflo D, Kunstler W (1996) Heat transfer and bubble formation with pool boiling of propane at a horizontal copper tube. In: Proceedings of the 2nd European thermal sciences and 14th UIT national heat transfer conference, vol 3, pp 1653–1660

  18. Gorenflo D, Danger E, Luke A, Kotthoff S, Chandra U, Ranganayakulu C (2004) Bubble formation with pool boiling on tubes with or without basic surface modifications for enhancement. Int J Heat Fluid Flow 25:288–297

    Article  Google Scholar 

  19. Barthau G (1992) Active nucleation site density and pool boiling heat transfer—an experimental study. Int J Heat Mass Transfer 35:271–278

    Article  Google Scholar 

  20. Barthau G, Hahne E (2003) Experimental study of nucleate pool boiling of R134a on a stainless steel tube. In: Proceedings of the fifth international conference on boiling heat transfer, Montego Bay, 4–8 May

  21. Judd RL, Merte H (1970) Influence of acceleration on subcooled nucleate pool boiling. In: Proceedings of the fourth international heat transfer conference, Versailles: Paper B 8.7

  22. Judd RL, Chopra A (1993) Interaction of nucleation processes occurring at adjacent nucleation sites. J Heat Transfer 115:955–962

    Article  Google Scholar 

  23. Nishio S, Gotoh T, Nagai N (1998) Observation of boiling structures in high heat flux boiling. Int J Heat Mass Transfer 41:3191–3201

    Article  Google Scholar 

  24. Chung HJ, No HC (2003) Simultaneous visualization of dry spots and bubbles for pool boiling of R-113 on a horizontal heater. Int J Heat Mass Transfer 46:2239–2251

    Article  Google Scholar 

  25. Judd RL, Hwang KS (1976). Comprehensive model for nucleate pool boiling heat-transfer including microlayer evaporation. J Heat Transfer 98:623–629

    Google Scholar 

  26. Kenning DBR, Yan Y (1996) Pool boiling heat transfer on a thin plate: features revealed by liquid crystal thermography. Int J Heat Mass Transfer 39:3117–3137

    Article  Google Scholar 

  27. McSharry PE, Smith LA, Kono T, Kenning DBR (2000) Nonlinear analysis of site interactions in pool nucleate boiling. In: Proceedings of the third European thermal sciences conference, vol 2, Heidelberg, 10–13 September, pp 725–730

  28. McSharry PE, Ellepola JH, von Hardenberg J, Smith LA, Kenning DBR, Judd K (2002) Spatio-temporal analysis of nucleate pool boiling: identification of nucleation sites using non-orthogonal empirical functions. Int J Heat Mass Transfer 45:237–253

    Article  MATH  Google Scholar 

  29. von Hardenberg J, Kono T, Kenning DBR, McSharry PE, Smith LA (2002) Identification of boiling nucleation sites by non-orthogonal empirical functions (NEF) analysis of thermographic data. In: Proceedings of the 12th international heat transfer conference, vol 3, Grenoble, 18–23 August, pp377–382

  30. von Hardenberg J, Kenning DBR, Xing H, Smith LA (2004) Identification of nucleation site interactions. Int J Heat Fluid Flow 25:298–304

    Article  Google Scholar 

  31. Buchhol M, Lüttich T, Auracher H, Marquardt W (2004) Experimental investigation of local processes in pool boiling along the entire boiling curve. Int J Heat Fluid Flow 25:243–261

    Article  Google Scholar 

  32. Demiray F, Kim J (2004) Microscale heat transfer measurements during pool boiling of FC-72: effect of subcooling. Int J Heat Mass Transfer 47:3257–3268

    Article  Google Scholar 

  33. Auracher H, Marquardt W (2004) Heat transfer characteristics and mechanisms along entire boiling curves under steady-state and transient conditions. Int J Heat Fluid Flow 25:223–242

    Article  Google Scholar 

  34. Lüttich T, Marquardt W, Buchholz M, Auracher H (2003) Towards a unifying heat transfer correlation for the entire boiling curve. In: Proceedings of the fifth international conference on boiling heat Transfer, Montego Bay, 4–8 May

  35. Mosdorf R (2000) Modelling of heating surface temperature fluctuations in nucleate boiling using two-dimensional model. Archiwum Termodynamiki 21:29–42

    Google Scholar 

  36. Mosdorf R (2002) The correlation dimension of attractor reconstructed from the heating surface temperature fluctuations in boiling. In: Proceedings of the third international conference on heat transfer and transport phenomena in multiphase systems, Kielce, pp 379–386

  37. Gjerkeš H, Golobič I (2001) Interactions between laser-activted nucleation sites in pool boiling. Int J Heat Mass Transfer 44:143–153

    Article  Google Scholar 

  38. Gjerkeš H, Golobič I (2003) Measurement of certain parameters influencing activity of nucleation sites in pool boiling. Exp Thermal Fluid Sci 25:487–493

    Article  Google Scholar 

  39. Zhang L, Shoji M (2003) Nucleation site interaction in pool boiling on the artificial surface. Int J Heat Mass Transfer 46:513–522

    Article  Google Scholar 

  40. Shoji M, Zhang L (2003) Boiling features on artificial surfaces. In: Proceedings of the fifth international conference on boiling heat transfer, Montego Bay, 4–8 May

  41. Zhang L (2002) Nucleation site interaction in pool boiling on artificial surfaces. PhD Thesis, Department of Mechanical Engineering, University of Tokyo

  42. Bonjour J, Clausse M, Lallemand M (2000) Experimental study of the coalescence phenomenon during nucleate pool boiling. Exp Thermal Fluid Sci 20:180–187

    Article  Google Scholar 

  43. Golobič I, Pavlovič E, Strgar S, Kenning DBR, Yan Y (1996) Wall temperature variations during bubble growth on a thin plate: computations and experiments. In: Proceedings of the Eurotherm Seminar No.48 pool boiling, Paderborn, 18–20 September, pp 5–32

  44. Kenning DBR (1999) What do we really know about nucleate boiling? In: IMechE conference transactions sixth UK national heat transfer conference, Edinburgh, 15–16 September, pp 143–167

  45. Golobič I, Pavlovič E, von Hardenberg J, Berry M, Nelson RA, Kenning DBR, Smith LA (2004) Comparison of a mechanistic model for nucleate boiling with experimental spatio-temporal data. Trans IChemE A Chem Eng Res Design 82:435–444

    Article  Google Scholar 

  46. Mesler RL (1992) Improving nucleate boiling using secondary nucleation. In: Proceedings of the engineering foundation conference on pool and flow boiling, Santa Barbara, pp 43–48

  47. Myers JE (1985) Short-lived sites in nucleate boiling. AIChE J 31:1441–1445

    Article  Google Scholar 

  48. Gorenflo D, Luke A, Danger E (1998) Interactions between heat transfer and bubble formation in nucleate boiling. In: Proceedings of the 11th international heat transfer conference, vol 1, Kyongju, pp 149–174

  49. Luke A (2004) Active and potential bubble nucleation sites on different structured heated surfaces. Trans IChemE A, Chem Eng Res Design 82:462–470

    Article  Google Scholar 

  50. Qi Y, Klausner JF, Mei R (2004) Role of surface structure in heterogeneous nucleation. Int J Heat Mass Transfer 47:3097–3107

    Article  Google Scholar 

  51. Brown WT (1967) A study of flow surface boiling. PhD Thesis, Massachusetts Institute of Technology

  52. Xing H, Kenning DBR (2003) Identification of bubble nucleation sites. In: Proceedings of the eighth UK national heat transfer conference, Oxford, 9–10 September, Paper PC7

Download references

Acknowledgements

This paper is based in part on work funded by EPSRC Grant GR/M89034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kenning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenning, D., Golobič, I., Xing, H. et al. Mechanistic models for pool nucleate boiling heat transfer: input and validation. Heat Mass Transfer 42, 511–527 (2006). https://doi.org/10.1007/s00231-005-0648-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-005-0648-3

Keywords

Navigation