Skip to main content
Log in

Solid dissolution in a thin liquid film on a horizontal rotating disk

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A model for the rate of dissolution in liquid film on horizontal rotating disk is obtained by the method of Leveque. It as well as models found in the literature are subjected to experimental verification by dissolving disk cast of gypsum in two liquids. Satisfactory agreement with the model predictions is found. The rate with rotation is compared to that in gravitational film. Enhancements up to 2.5 times are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C :

solute concentration (kg m−3)

C n :

eigenfunction

D :

diffusivity coefficient (m2 s−1)

E :

Ekman number, E=ν/ωr 2

g :

gravity acceleration (m s−2)

J :

local mass transfer rate (kg m−2 s−1)

\(\overline{J}\) :

mean integral mass transfer rate (kg m−2 s−1)

\(\overline{K}\) :

average mass transfer coefficient, Eq. 21 (m s−1)

M(a, b, c):

confluent hypergeometric function

Q :

volumetric flow rate (m3 s−1)

R :

radius of the disk (m)

r :

radial coordinate (m)

Re :

Reynolds number, Re = Q/2πrν

\(\overline{Re}\) :

mean integral Reynolds number on the dissolving disk surface, \(\overline{{Re}}\,=\,Q \mathord{\left/ {\vphantom {Q {\pi \nu }}} \right. \kern-\nulldelimiterspace} {\pi \nu }(R_{{\rm out}} + R_{{\rm in}})\)

Sc:

Schmidt number, Sc = ν/D

\(\overline{\hbox{Sh}}\) :

mean Sherwood number, Eq. 20 or Eq. 23

w :

fluid velocity (m s−1)

Y :

dimensionless axial coordinate, Eq. 5b

y :

axial coordinate (m)

Z :

dimensionless complex variable, Eq. 5d

Γ:

gamma function

δ:

height of the liquid film (m)

η:

dimensionless complex variable, Eq. 12

λ n :

eigenvalue

μ:

dynamic viscosity (Pa s)

ν:

kinematic viscosity (m2 s−1)

ϑ:

dimensionless concentration, Eq. 11

ρ:

fluid density (kg m−3)

ω:

angular disk velocity (rad s−1)

ξ:

dimensionless radial coordinate, Eq. 5c

ψ:

dimensionless concentration, Eq. 5a

in:

at the entrance

w:

at the disk surface

out:

at the exit

b:

bulk (mixed mean)

rot:

in the field of rotation

grav:

in the field of gravitation

References

  1. Esprig H, Hoyle R (1965) Waves in a thin liquid layer on a rotating disk. J Fluid Mech 22:671–677

    Article  Google Scholar 

  2. Charwat AF, Kelly RE, Gazley C (1972) The flow and stability of thin liquid films on a rotating disk. J Fluid Mech 53:227–255

    Article  Google Scholar 

  3. Matsumoto S, Saito K, Takashima Y (1973) The thickness of a viscous liquid film on a rotating disk. J Chem Eng Jpn 6:503–507

    Google Scholar 

  4. Rausher JW, Kelly RE, Cole JD (1973) An asymptotic solution for the laminar flow of thin film on a rotating disk. J Appl Mech 40:43–47

    Google Scholar 

  5. Lepehin GI, Riabchuk GV (1975) Temperature distribution in film of viscous liquid with heating on a rotating disk (in Russian). Rheology in processes and apparatus of chemical technology, works of Polytechnic Institute of Volgograd, pp 82–91

  6. Thomas S, Faghri A, Hankey W (1991) Experimental analysis and flow visualization of a thin liquid film on a stationary and rotating disk. J Fluids Eng 113:73–80

    Article  Google Scholar 

  7. Myers TG, Charpin JPF (2001) The effect of the Coriolis force on axisymetric rotating film flows. Int J Non-Linear Mech 36:629–635

    Article  MATH  Google Scholar 

  8. Leshev I, Peev G (2003) Film flow on a horizontal rotating disk. Chem Eng Process 42:925–929

    Article  Google Scholar 

  9. Rahmann MM, Faghri A (1992) Numerical simulation of fluid flow and heat transfer in a thin liquid film over a rotating disk. Int J Heat Mass Transfer 35:1441–1453

    Article  Google Scholar 

  10. Rahmann MM, Faghri A (1992) Analysis of heating and evaporation from a liquid film flow adjacent to a horizontal rotating disk. Int J Heat Mass Transfer 35:2655–2664

    Article  Google Scholar 

  11. Rahmann MM, Faghri A (1993) Gas absorption and solid dissolution in a thin liquid film on a rotating disk. Int J Heat Mass Transfer 36:189–199

    Article  Google Scholar 

  12. Aoune A, Ramshaw C (1999) Process intensification: heat and mass transfer characteristics of liquid films on rotating discs. Int J Heat Mass Transfer 42:2543–2556

    Article  Google Scholar 

  13. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs and mathematical tables. National Bureau of Standard, US Department of Commerce, Washington DC

  14. Bird RB, Steward WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York, pp 551–552

  15. Chemist Handbook (1964) Vol 3, 2nd edn. Himia, Moskva, pp 308–309

  16. Peev G, Nikolova A (1972) On the mass transfer from a flat surface to a liquid, agitated in a baffled vessel. Annuaire de l‘Ecole superiere de chimie industrielle-Sofia 19:193–201

    Google Scholar 

  17. Peev G, Nikolova A, Beschkov V, Christov G (2001) A method for determination of diffusivities of low molecular substances in non-Newtonian liquids. Biochem Eng J 8:83–89

    Article  PubMed  Google Scholar 

  18. Sherwood TK, Pigford L, Wilke CR (1982) Mass transfer, Russian translation. Himia, Moskva, p 39

  19. Woods W (1995) The hydrodynamics of thin liquid films flowing over a rotating disk. PhD Thesis, Newcastle University, pp 40, 109

  20. Peev G, Nikolova A, Gospodinov S (1976) Investigation of the mass transfer in a film of pseudoplastic liquid with dissolution. Comptes rendus de l’Academie bulgare des Sciences 29:555–558

    Google Scholar 

  21. Beschkov V, Boyadjiev C, Peev G (1978) On the mass transfer into a falling laminar film with dissolution. Chem Eng Sci 33:65–69

    Article  Google Scholar 

  22. Alekseenko SV, Nakoryakov VE, Pokusaev BG (1994) Wave flow of liquid films. CRC Press, London/Tokyo, p 245

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Peev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peev, G., Nikolova, A. & Peshev, D. Solid dissolution in a thin liquid film on a horizontal rotating disk. Heat Mass Transfer 43, 397–403 (2007). https://doi.org/10.1007/s00231-006-0111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0111-0

Keywords

Navigation