Skip to main content
Log in

A new evaluation method for Nusselt numbers in naphthalene sublimation experiments in rotating-disk systems

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A comparative analysis of theoretical and empirical relations, as well as experimental data for mass transfer of a rotating disk in laminar, transitional and turbulent flows for naphthalene sublimation in air was done. New correlations between local and average Sherwood numbers for the entire disk were offered. A new evaluation approach for Nusselt numbers based on the experimental data for naphthalene sublimation in laminar, transitional and turbulent flows was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity

b :

outer radius of disk

C :

concentration

D m :

diffusion coefficient

h m :

mass transfer coefficient

h m,av :

average mass transfer coefficient \( {\left( { = \frac{2} {{b^{2} }}{\int\limits_0^b {h_{{\text{m}}} rdr} }} \right)} \)

k :

thermal conductivity

K 1 :

constant in Eqs. (1), (2)

K 2 :

constant in Eqs. (1), (2)

n R :

exponent in Eqs. (1), (2)

Nu :

Nusselt number (=q w r/[k(T w − T )])

Nu av :

average Nusselt number (=q w,av b/[k(T w − T )av])

Pr :

Prandtl number (=ν/a)

q w :

local heat flux at the wall

q w,av :

average heat flux at the wall \( {\left( { = {{\int\limits_0^b {q_{{\text{w}}} rdr} }} \mathord{\left/ {\vphantom {{{\int\limits_0^b {q_{{\text{w}}} rdr} }} {{\int\limits_0^b {rdr} }}}} \right. \kern-\nulldelimiterspace} {{\int\limits_0^b {rdr} }}} \right)} \)

r, φ, z :

radial, tangential and axial coordinate

Re ω :

local Reynolds number (=ωr 2/ν)

Re φ :

Reynolds number at b (=ωb 2/ν)

Sc :

Schmidt number (=ν/D m)

Sh :

Sherwood number (=h m r/D m)

Sh av :

average Sherwood number (=h m,av b/D m)

(T w − T )av :

average temperature difference \( {\left( { = {{\int\limits_0^b {(T_{{\text{w}}} - T_{\infty } )rdr} }} \mathord{\left/ {\vphantom {{{\int\limits_0^b {(T_{{\text{w}}} - T_{\infty } )rdr} }} {{\int\limits_0^b {rdr} }}}} \right. \kern-\nulldelimiterspace} {{\int\limits_0^b {rdr} }}} \right)} \)

T :

temperature

ν:

kinematic viscosity

ω :

angular speed of rotation of the disk

av:

average value

tr:

transition

w:

wall (z = 0)

∞:

infinity

References

  1. Chen Y-M, Lee W-T, Wu S-J (1998) Heat (mass) transfer between an impinging jet and a rotating disk. Heat Mass Transf 34(2–3):101–108

    Google Scholar 

  2. Cho HH, Rhee DH (2001) Local heat/mass transfer measurement on the effusion plate in impingement/effusion cooling systems. Trans ASME J Turbomachinery 123(3):601–608

    Article  Google Scholar 

  3. Cho HH, Won CH, Ryu GY, Rhee DH (2003) Local heat transfer characteristics in a single rotating disk and co-rotating disks. Microsystem Technol 9(6–7):399–408

    Article  Google Scholar 

  4. Cho HH, Wu SJ, Kwon HJ (2000) Local heat/mass transfer measurements in a rectangular duct with discrete ribs. Trans ASME J Turbomachinery 122(3):579–586

    Article  Google Scholar 

  5. He Y, Ma LX, Huang S (2005) Convection heat and mass transfer from a disk. Heat Mass Transf 41(8):766–772

    Article  Google Scholar 

  6. Janotková E., Pavelek M (1986) A naphthalene sublimation method for predicting heat transfer from a rotating surface. Strojnícky Časopis 37(3):381–393 (in Czech)

    Google Scholar 

  7. Koong S-S, Blackshear PL Jr (1965) Experimental measurement of mass transfer from a rotating disk in a uniform stream. Trans ASME J Heat Transf 85:422–423

    Google Scholar 

  8. Kreith F, Taylor JH, Chong JP (1959) Heat and mass transfer from a rotating disk. Trans ASME J Heat Transf 81:95–105

    Google Scholar 

  9. Shimada R, Naito S, Kumagai S, Takeyama T (1987) Enhancement of heat transfer from a rotating disk using a turbulence promoter. JSME Int J Ser B 30(267):1423–1429

    Google Scholar 

  10. Sparrow EM, Chaboki A (1982) Heat transfer coefficients for a cup-like cavity rotating about its own axis. Int J Heat Mass Transf 9(11):1334–1341

    Google Scholar 

  11. Tien CL, Campbell CL (1963) Heat and mass transfer from rotating cones. J Fluid Mech 17:105–112

    Article  MATH  Google Scholar 

  12. Dorfman LA (1963) Hydrodynamic resistance and the heat loss of rotating solids. Oliver and Boyd, Edinburgh, UK

    Google Scholar 

  13. Owen JM, Rogers RH (1989) Flow and heat transfer in rotating-disc systems, vol 1. Rotor-stator systems, Research Studies Press, Taunton, UK and John Wiley, New York, USA

  14. Shevchuk IV, Buschmann MH (2005) Rotating disk heat transfer in a fluid swirling as a forced vortex. Heat Mass Transf 41(12):1112–1121

    Article  Google Scholar 

  15. Elkins CJ, Eaton JK (1997) Heat transfer in the rotating disk boundary layer. Stanford University, Dept. Mechanical Engineering, Thermosciences Division Report TSD-103

  16. Popiel CzO, Boguslawski L (1975) Local heat-transfer coefficients on the rotating disk in still air. Int J Heat Mass Transf 18:167–170

    Article  Google Scholar 

  17. Shevchuk IV (2000) Turbulent heat transfer of rotating disk at constant temperature or density of heat flux to the wall. High Temp 38:499–501

    Article  Google Scholar 

  18. Shevchuk IV (2005) A new type of the boundary condition allowing analytical solution of the thermal boundary layer equation. Int J Thermal Sci 44(4):374–381

    Article  MathSciNet  Google Scholar 

  19. Dossenbach O (1976) Simultaneous laminar and turbulent mass transfer at a rotating disk electrode. Berichte der Bunsen-Gesellschaft-Phys Chem Chem Phys 80(4):341–343

    Google Scholar 

  20. Mohr CM, Newman J (1976) Mass transfer to a rotating disk in transitional flow. J Electrochem Soc 33:1449–1461

    Google Scholar 

Download references

Acknowledgments

The research results that laid the foundation of the present work were obtained in part due to the gratefully acknowledged support of the Research Fellowship of the Alexander von Humboldt Foundation taken by the author at TU Dresden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Shevchuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchuk, I.V. A new evaluation method for Nusselt numbers in naphthalene sublimation experiments in rotating-disk systems. Heat Mass Transfer 44, 1409–1415 (2008). https://doi.org/10.1007/s00231-008-0376-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0376-6

Keywords

Navigation