Skip to main content
Log in

Experimental investigations of flow field and heat transfer characteristics due to periodically pulsating impinging air jets

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The paper concentrates on increasing convective heat transfer due to periodically pulsating impinging air jets. A maximum enhancement rate of cooling effectiveness up to 20% could be detected at an excitation Strouhal number of Sr = 0.82 when using a high pulsation magnitude. Reductions up to 5% occured at low Strouhal numbers with coincident high pulsation magnitudes as well. The thermal results were completed with phase-locked flow field investigations by means of PIV and surface visualizations using the oil film method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A :

flow pulsation magnitude (nozzle exit) (–)

d :

nozzle diameter (m)

f :

frequency of excitation (Hz)

l :

nozzle length (m)

N :

number of time traces (–)

n :

number of samples per time trace (−)

Re :

Reynolds number (–)

Sr :

Strouhal number of excitation (–), \(Sr=\frac{f\cdot{d}}{v}\)

s :

thickness of the impingement plate (m)

T aw :

adiabatic wall temperature (°C)

T Cold :

cooling air temperature (°C)

T D :

dimless nozzle-to-nozzle spacing T D  = x D /d (–)

T Hot :

heater temperature (°C)

T Wall :

wall temperature of impingement plate (°C)

w :

mean jet exit velocity (m/s)

x D :

nozzle-to-nozzle distance (m)

y :

nozzle-to-plate distance (m)

ɛ:

cooling effectiveness (–), \(\varepsilon=\frac{T_{\rm Wall}-T_{\rm Hot}}{T_{\rm Hot}-T_{\rm Cold}}\)

Δɛ:

uncertainty of cooling effectiveness (–)

λ:

impingement plate thermal conductivity (W/mK)

Ω:

vorticity (1/s)

0 Hz:

without excitation

d :

diameter

EX:

Excitation

f :

with excitation

max:

Maximum

P :

periodic

SP:

Stagnation Point

th:

theoretical

′:

fluctuation

−:

mean

\(\widehat{ }\) :

ensemble averaged

References

  1. Baehr H, Stephan K (2004) Wärme- und Stoffübertragung. Springer, Heidelberg

  2. Beitelmal AH, Saad MA, Patel CD (2000) The effect of inclination on the heat transfer between a flat surface andan impinging two-dimensional air jet. Int J Heat Fluid Flow 21:156–163

    Article  Google Scholar 

  3. Bouchez JP, Goldstein RJ (1975) Impingement cooling from a circular jet in a crossflow. Int J Heat Mass Transf 18:719–730

    Article  Google Scholar 

  4. Bronkhorst High-Tech BV (2004) Instruction Manual, 9th edn

  5. Brunn A, Nitsche W (2005) Active control of turbulent separated flows by means of large scale vortex excitation. Eng Tubul Modell Exp 6:555–564

    Article  Google Scholar 

  6. Camci C, Herr F (2002) Forced convection heat transfer enhancement using a self-oscillating impinging planar jet. J Heat Transf 124:770–782

    Article  Google Scholar 

  7. Crow S, Champagne F (1971) Orderly structure in jet turbulence. J Fluid Mech 48:547–591

    Article  Google Scholar 

  8. Curtet RM, Girard J (1973) Visualization of a pulsating jet. In: Proceedings, the joint meeting of the fluids engineering division—fluid mechanics of mixing, pp 173–180

  9. Dieck RH (1997) Measurement uncertainty methods and applications, 2nd edn. Instrument Society of America, Research Triangle Park

  10. Eckert E (1959) Einführung in den Wärme- und Stoffaustausch. Springer, Heidelberg

  11. Evans RL (1975) Turbulence and unsteadiness measurements downstream of a moving blade row. ASME J Eng Power 122:131–139

    Google Scholar 

  12. Farrington RB, Claunch SD (1994) Infrared imaging of large-amplitude, low-frequency disturbances on a planar jet. AIAA J 32:317–323

    Article  Google Scholar 

  13. Flohrschuetz LW, Su CC (1987) Effects of cross flow temperature on heat transfer within an array of impinging jets. ASME J Heat Transf 109:74–82

    Google Scholar 

  14. Herwig H, Göppert S, Gürtler T, Mocikat H (2004) Wärmeübergang bei instationären prallstrahlen. Chemie Ingenieur Technik 76(1–2):84–88

    Article  Google Scholar 

  15. Ho C, Nosseir N (1981) Dynamics of an impinging jet. Part 1. The feedback phenomenon. J Fluid Mech 105:119–142

    Article  Google Scholar 

  16. Hofmann H (2005) Wärmeübergang beim pulsierenden prallstrahl. PhD Thesis, Universität Karlsruhe (TH)

  17. Hollworth BR, Wilson SI (1984) Entrainment effects on impingement heat transfer: Part i—Measurement ofheated jet velocity and temperature distributions and recovery temperatureson target surface. ASME J Heat Transf 106:797–803

    Article  Google Scholar 

  18. Hwang SD, Cho HH (2003) Effects of acoustic excitation positions on heat transfer and flow in axisymmetric impinging jet: main jet excitation and shear layer excitation. Int J Heat Fluid Flow 24:199–209

    Article  Google Scholar 

  19. Hwang SD, Lee CH, Cho HH (2001) Heat transfer and flow structures in axisymmetric impinging jet controlled by vortex pairing. Int J Heat Fluid Flow 22:293–300

    Article  Google Scholar 

  20. Ichimiya K (2003) Heat transfer characteristics of an annular turbulent impinging jet with a confined wall measured by thermosensitive liquid crystal. Heat Mass Transf 39:545–551

    Article  Google Scholar 

  21. Jambunathan K, Lai E, Moss MA, Button BL (1992) A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow 13:106–115

    Article  Google Scholar 

  22. Kataoka K, Suguro M, Degawa H, Maruo K, Mihata I (1987) The effect of surface renewal due to large-scale eddies on jet impingementheat transfer. Int J Heat Mass Transf 30:559–567

    Article  Google Scholar 

  23. Linear Technologies Corporation (1988) LT1025 Micropower Thermocouple Cold Junction Compensator

  24. Martin H (1977) Heat and mass transfer between impinging gas jets and solid surfaces. Adv Heat Transf 13:1–60

    Article  Google Scholar 

  25. Meilhaus Electronic GmbH (2005) Meilhaus Electronic Handbuch Me-2000/2600/3000. Meilhaus Electronic GmbH, 2nd edn

  26. Microstar Laboratories Inc (2000) DAP 4400a manual, V 1.0 edn

  27. Nevins RG, Ball HD (1961) Heat transfer between a flat plate. Proc Natl Heat Transf 60:510–516

    Google Scholar 

  28. Pagenkopf U (1996) Untersuchung der lokalen konvektiven transportvorgänge auf prallflächen. PhD Thesis, Technische Hochschule Darmstadt

  29. Sheriff H, Zumbrunnen D (1994) Effect of flow pulsations on the cooling effectiveness of an impinging jet. J Heat Transf 116:886–895

    Article  Google Scholar 

  30. Sheriff H, Zumbrunnen D (1999) Local and instantaneous heat transfer characteristics of arrays of pulsatingjets. J Heat Transf 121:341–348

    Article  Google Scholar 

  31. Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Therm Fluid Sci 6:111–134

    Article  Google Scholar 

  32. Zaman K, Hussain A (1980) Vortex pairing in a circular jet under controlled excitation. Part 1. Generaljet response. J Fluid Mech 101:449–491

    Article  Google Scholar 

  33. Zumbrunnen DA (1992) Transient convective heat transfer in planar stagnation flows with time-varyingsurface heat flux and temperature. J Heat Transf 114:85–93

    Article  Google Scholar 

  34. Zumbrunnen D, Aziz M (1993) Convective heat transfer enhancement due to intermittency in an impingingjet. J Heat Transf 115:91–98

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the German Ministry of Economics and Technology (Project no. 10024592) in cooperation with Rolls-Royce Germany Ltd & Co KG. Thanks to Dr. Andre Brunn for PIV-System support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Janetzke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janetzke, T., Nitsche, W. & Täge, J. Experimental investigations of flow field and heat transfer characteristics due to periodically pulsating impinging air jets. Heat Mass Transfer 45, 193–206 (2008). https://doi.org/10.1007/s00231-008-0410-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0410-8

Keywords

Navigation