Skip to main content
Log in

Peristaltic flow of a nanofluid in a non-uniform tube

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2011

Abstract

The present analysis discusses the peristaltic flow of a nanofluid in a diverging tube. This is the first article on the peristaltic flow in nanofluids. The governing equations for nanofluid are modelled in cylindrical coordinates system. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Temperature and nanoparticle equations are coupled so Homotopy perturbation method is used to calculate the solutions of temperature and nanoparticle equations, while exact solutions have been calculated for velocity profile and pressure gradient. The solution depends on Brownian motion number N b , thermophoresis number N t , local temperature Grashof number B r and local nanoparticle Grashof number G r . The effects of various emerging parameters are investigated for five different peristaltic waves. It is observed that the pressure rise decreases with the increase in thermophoresis number N t . Increase in the Brownian motion parameter N b and the thermophoresis parameter N t temperature profile increases. Streamlines have been plotted at the end of the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

c p :

Specific heat

b :

Wave amplitude

N b :

Brownian motion parameter

N t :

Thermophoresis parameter

λ:

Wave length

c 1 :

Wave speed

B r :

Local temperature Grashof

c :

Volumetric volume expansion coefficient

σ:

Nano particle phenomena

G r :

Local nano particle Grashof number

D B :

Brownian diffusion coefficient

k :

Thermal conductivity

K T :

Thermal—diffusion ratio

\( D_{{\bar{T}}} \) :

Thermophoretic diffusion coefficient

\( \bar{C} \) :

Nano particle phenomena

F :

Frictional forces

\( \bar{T} \) :

Temperature

T m :

Temperature of the medium

u :

Velocity component in r-direction

w :

Velocity component in z-direction

μ:

Viscosity

ρ p :

Density of the particle

ρ:

Density of the fluid

ν:

Kinematic viscosity

φ:

Wave amplitude

References

  1. Latham TW (1966) Fluid motion in a peristaltic pump, MS. Thesis, Massachusetts Institute of Technology, Cambridge

  2. Mekheimer KS, Abd elmaboud Y (2008) Influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus. Application of an endoscope. Phys Lett A 372:1657–1665

    Article  MATH  Google Scholar 

  3. Nadeem S, Akbar NS (2010) Series solutions for the peristaltic flow of a Tangent hyperbolic fluid in a uniform inclined tube. Zeitschrift fur Naturforschung 65a:887–895

    Google Scholar 

  4. Nadeem S, Akbar NS, Bibi N, Ashiq S (2010) Influence of heat and mass transfer on peristaltic flow of a third order fluid in a diverging tube. Commun Nonlinear Sci Numerical Simul 15:2916–2931

    Article  Google Scholar 

  5. Mekheimer KS (2008) Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys Lett A 372:4271–4278

    Article  MATH  Google Scholar 

  6. Srinivas S, Gayathri R (2009) Peristaltic transport of a Newtonian fluid in a vertical asymmetric channel with heat transfer and porous medium. Appl Math Comput 215:185–196

    Article  MathSciNet  MATH  Google Scholar 

  7. Srinivas S, Kothandapani M (2009) The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Appl Math Comput 213:197–208

    Article  MathSciNet  MATH  Google Scholar 

  8. Srinivas S, Kothandapani M (2008) Peristaltic transport in an asymmetric channel with heat transfer. A note. Int Commun Heat Mass Transf 35:514–522

    Article  Google Scholar 

  9. Nadeem S, Akbar NS (2009) Effects of heat transfer on the peristaltic transport of MHD Newtonian fluid with variable viscosity: application of Adomian decomposition method. Commun Nonlinear Sci Numerical Simul 14:3844–3855

    Article  MathSciNet  Google Scholar 

  10. Nadeem S, Akbar NS (2009) Influence of heat transfer on a peristaltic transport of Herschel–Bulkley fluid in a non-uniform inclined tube. Commun Nonlinear Sci Numerical Simul 14:4100–4113

    Article  MathSciNet  MATH  Google Scholar 

  11. Mekheimer KS, Abd elmaboud Y (2008) The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Phys A 372:1657–1665

    MATH  Google Scholar 

  12. Srinivas S, Gayathri R, Kothandapani M (2009) The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport. Comput Phys Commun 180:2115–2122

    Article  MathSciNet  MATH  Google Scholar 

  13. Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf 53:2477–2483

    Article  MATH  Google Scholar 

  14. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and applications of Non-Newtonian flows, vol 66. ASME, New York, pp 99–105

    Google Scholar 

  15. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  16. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  17. Das SK, Putra N, Roetzel W (2003) Pool boiling of nano-fluids on horizontal narrow tubes. Int J Multiph Flow 29:1237–1247

    Article  MATH  Google Scholar 

  18. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  19. He JH (1998) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 167:57–68

    Article  MATH  Google Scholar 

  20. He JH (2005) Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 26:695–700

    Article  MATH  Google Scholar 

  21. He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262

    Article  MATH  Google Scholar 

Download references

Acknowledgments

Third author as a visiting Professor thanks the partial support of Global Research Network for Computational Mathematics and King Saud University for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noreen Sher Akbar.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00231-011-0929-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbar, N.S., Nadeem, S., Hayat, T. et al. Peristaltic flow of a nanofluid in a non-uniform tube. Heat Mass Transfer 48, 451–459 (2012). https://doi.org/10.1007/s00231-011-0892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0892-7

Keywords

Navigation