Skip to main content
Log in

Flow and heat transfer of nanofluids over stretching sheet taking into account partial slip and thermal convective boundary conditions

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effect of flow slip on the nanofluid boundary layer over a stretching surface is studied. The present results provide a basic understanding on the effects of the slip boundary condition on heat and mass transfer of nanofluids past stretching sheets subject to a convective boundary condition from below. The results show that an increase of thermophoresis parameter or slip factor would decrease the reduced Nusselt number in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

(ρc) f :

Heat capacity of the fluid

(ρc) p :

Effective heat capacity of the nanoparticle material

Bi :

Biot number

c :

Constant

D B :

Brownian diffusion coefficient

D T :

Thermophoretic diffusion coefficient

h f :

Heat transfer coefficient of convective heat transfer

k :

Thermal conductivity

Le :

Lewis number

N :

Slip constant

Nb :

Brownian motion parameter

Nt :

Thermophoresis parameter

Nu :

Nusselt number

p :

Pressure

Pr :

Prandtl number

q m :

Wall mass flux

q w :

Wall heat flux

Re x :

Local Reynolds number

Sh x :

Local Sherwood number

T :

Fluid temperature

T :

Ambient temperature

T f :

Temperature of the hot fluid

T w :

Temperature at the stretching sheet

u,v :

Velocity components along x and y axes

u w :

Velocity of the stretching sheet

x,y :

Cartesian coordinates (x axis is aligned along the stretching surface and y axis is normal to it)

α :

Thermal diffusivity

β :

Dimensionless nanoparticle volume fraction

η :

Similarity variable

θ :

Dimensionless temperature

λ:

Dimensionless slip factor

ρ f :

Fluid density

ρ p :

Nanoparticle mass density

τ :

Parameter defined by ratio between the effective heat capacity of the nanoparticle material and heat capacity of the fluid

ø :

Nanoparticle volume fraction

ø :

Ambient nanoparticle volume fraction

ø w :

Nanoparticle volume fraction at the stretching sheet

ψ :

Stream function

References

  1. Fisher EG (1976) Extrusion of plastics. Wiley, New York

    Google Scholar 

  2. Altan T, Oh S, Gegel H (1979) Metal forming fundamentals and applications. American Society of Metals

  3. Tadmor Z, Klein I (1970) Engineering principles of plasticating extrusion. Van Nostrand Reinhold, New York

    Google Scholar 

  4. Karwe MV, Jaluria Y (1991) Numerical simulation of thermal transport associated with a continuous moving flat sheet in materials processing. ASME J Heat Transfer 119:612–619

    Article  Google Scholar 

  5. Yacob NA, Ishak A, Pop I, Vajravelu K (2011) Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Res Lett 6:314–321

    Article  Google Scholar 

  6. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycolbased nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720

    Article  Google Scholar 

  7. Daungthongsuk W, Wongwises S (2007) A critical review of convective heat transfer nanofluids. Renew Sustain Energy Rev 11:797–817

    Article  Google Scholar 

  8. Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11:512–523

    Article  Google Scholar 

  9. Das SK, Choi S, Yu W, Pradeep T (2007) Nanofluids: science and technology. Wiley, New Jersey

    Book  Google Scholar 

  10. Wongcharee K, Eiamsa-ard S (2011) Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis. Int Commun Heat Mass Transfer 38:742–748

    Article  Google Scholar 

  11. Hwang K, Jang S, Choi S (2009) Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transfer 52:193–199

    Article  MATH  Google Scholar 

  12. Pakravan HA, Yaghoubi M (2011) Combined thermophoresis, Brownian motion and Dufour effects on natural convection of nanofluids. Int J Therm Sci 50:394–402

    Article  Google Scholar 

  13. Vajravelu K, Prasad KV, Lee J, Lee C, Pop I, Van Gorder RA (2011) Convective heat transfer in the flow of viscous Ag–water and Cu–water nanofluids over a stretching surface. Int J Therm Sci 50:843–851

    Article  Google Scholar 

  14. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transfer 128:240

    Article  Google Scholar 

  15. Pak BC, Cho Y (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer 11:151–170

    Article  Google Scholar 

  16. Kakac S, Pramaumjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transfer 52:3187–3196

    Article  MATH  Google Scholar 

  17. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transfer 125:151–155

    Article  Google Scholar 

  18. Sakiadis BC (1961) Boundary-layer behavior on continuous solid surface: I. Boundary-layer equations for two-dimensional and axisymmetric flow. J AIChe 7:26–33

    Article  Google Scholar 

  19. Crane L (1970) Flow past a stretching plate. Z Angew Math Phys 21:645–651

    Article  Google Scholar 

  20. Prasad KV, Vajravelu K (2009) Heat transfer in the MHD flow of a power law fluid over a non-isothermal stretching sheet. Int J Heat Mass Transfer 52:4956–4965

    Article  MATH  Google Scholar 

  21. Sahoo B, Poncet S (2011) Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial slip boundary condition. Int J Heat Mass Transfer 54:5010–5019

    Article  MATH  Google Scholar 

  22. Khan WA, Pop I (2010) Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transfer 53:2477–2483

    Article  MATH  Google Scholar 

  23. Noghrehabadi A, Pourrajab R, Ghalambaz M (2012) Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature. Int J Therm Sci 54:253–261

    Article  Google Scholar 

  24. Noghrehabadi A, Ghalambaz M, Ghalambaz M, Ghanbarzadeh A (2012) Comparing thermal enhancement of Ag–water and SiO2–water nanofluids over an isothermal stretching sheet with suction or injection. J Comput Appl Res Mech Eng 2:35–47

    Google Scholar 

  25. Yazdi MH, Abdullah S, Hashim I, Sopian K (2011) Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction. Int J Heat Mass Transfer 54:3214–3225

    Article  MATH  Google Scholar 

  26. Gupta PS, Gupta AS (1977) Heat and mass transfer on a stretching sheet with suction or blowing. Can J Chem Eng 55:744–749

    Article  Google Scholar 

  27. Fang T, Zhang J (2009) Thermal boundary layers over a shrinking sheet: an analytical solution. Acta Mech 209:325–343

    Article  Google Scholar 

  28. Cortell R (2007) Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl Math Comput 184:864–873

    Article  MathSciNet  MATH  Google Scholar 

  29. Aziz A (2009) A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 14:1064–1068

    Article  MathSciNet  Google Scholar 

  30. Magyari E (2011) Comment on “A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition” by A. Aziz, Comm Nonlinear Sci Numer Simul. 2009;14:1064–1068. Comm Nonlinear Sci Numer Simul 16:599–601

    Google Scholar 

  31. Hamad MAA, Ferdows M (2012) Similarity solution of boundary layer stagnation-point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a lie group analysis. Commun Nonlinear Sci Numer Simul 17:132–140

    Article  MathSciNet  MATH  Google Scholar 

  32. Ishak A (2010) Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition. Appl Math Comput 217:837–842

    Article  MathSciNet  MATH  Google Scholar 

  33. Merkin JH, Pop I (2011) The forced convection flow of a uniform stream over a flat surface with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 16:3602–3609

    Article  MathSciNet  MATH  Google Scholar 

  34. Yao S, Fang T, Zhong Y (2011) Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Commun Nonlinear Sci Numer Simul 16:752–760

    Article  MATH  Google Scholar 

  35. Mukhopadhyay S, Gorla RSR (2012) Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation. Heat Mass Transfer 48:1773–1781

    Article  Google Scholar 

  36. Wang CY (2002) Flow due to a stretching boundary with partial slip—an exact solution of the Navier–Stokes equations. Chem Eng Sci 57:3745–3747

    Article  Google Scholar 

  37. Wang CY (2009) Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Anal Real World Appl 10:375–380

    Article  MathSciNet  MATH  Google Scholar 

  38. Andersson HI (2002) Slip flow past a stretching surface. Acta Mech 158:121–125

    Article  MATH  Google Scholar 

  39. Ariel PD (2007) Axisymmetric flow due to a stretching sheet with partial slip. Comput Math Appl 54:1169–1183

    Article  MathSciNet  MATH  Google Scholar 

  40. Sahoo B, Do Y (2010) Effects of slip on sheet-driven flow and heat transfer of a third grade fluid past a stretching sheet. Int Commun Heat Mass Transfer 37:1064–1071

    Article  Google Scholar 

  41. Hayat T, Qasim M, Mesloub S (2011) MHD flow and heat transfer over permeable stretching sheet with slip conditions. Int J Numer Methods Fluids 66:963–975

    Article  MathSciNet  MATH  Google Scholar 

  42. Das K (2012) Impact of thermal radiation on MHD slip flow over a flat plate with variable fluid properties. Heat Mass Transfer 48:767–778

    Article  Google Scholar 

  43. Bocquet L, Barrat JL (2007) Flow boundary conditions from nano- to micro-scales. Soft Matter 3:685–693

    Article  Google Scholar 

  44. Bachok N, Ishak A, Pop I (2010) Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int J Therm Sci 49:1663–1668

    Article  Google Scholar 

  45. Kuznetsov AV, Nield DA (2010) Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int J Therm Sci 49:243–247

    Article  Google Scholar 

  46. Hassani M, Mohammad Tabar M, Nemati H, Domairry G, Noori F (2011) An analytical solution for boundary layer flow of a nanofluid past a stretching sheet. Int J Therm Sci 50:2256–2263

    Article  Google Scholar 

  47. Makinde OD, Aziz A (2011) Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 50:1326–1332

    Article  Google Scholar 

  48. Noghrehabadi A, Saffarian MR, Pourrajab R, Ghalambaz M (2013) Entropy analysis for nanofluid flow over a stretching sheet in the presence of heat generation/absorption and partial slip. J Mech Sci Technol 27:927–937

    Article  Google Scholar 

  49. Noghrehabadi A, Ghalambaz M, Ghanbarzadeh A (2012) Heat transfer of magnetohydrodynamic viscous nanofluids over an isothermal stretching sheet. J Thermophys Heat Transfer 26:686–689

    Article  Google Scholar 

  50. Rana P, Bhargava R (2012) Flow and heat transfer of a nanofluid over a non-linearly stretching sheet: a numerical study. Commun Nonlinear Sci Numer Simul 17:212–226

    Article  MathSciNet  Google Scholar 

  51. Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438:44

    Google Scholar 

  52. Van Gorder RA, Sweet E, Vajravelu K (2010) Nano boundary layers over stretching surfaces. Commun Nonlinear Sci Numer Simulat 15:1494–1500

    Article  MATH  Google Scholar 

  53. Fehlberg E (1969) Low-order classical Runge–Kutta formulas with step size control and their application to some heat transfer problems. Technical report NASA

  54. Fehlberg E (1970) Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Comput Arch Elektron Rechn 6:61–71

    MathSciNet  MATH  Google Scholar 

  55. Hamad MAA, Uddin MJ, Ismail AIM (2012) Investigation of combined heat and mass transfer by Lie group analysis with variable diffusivity taking into account hydrodynamic slip and thermal convective boundary conditions. Int J Heat Mass Transfer 55:1355–1362

    Article  MATH  Google Scholar 

  56. Nield DA, Kuznetsov AV (2009) The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int J Heat Mass Transfer 52:2795–5792

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Shahid Chamran University of Ahvaz for its crucial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Noghrehabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noghrehabadi, A., Pourrajab, R. & Ghalambaz, M. Flow and heat transfer of nanofluids over stretching sheet taking into account partial slip and thermal convective boundary conditions. Heat Mass Transfer 49, 1357–1366 (2013). https://doi.org/10.1007/s00231-013-1179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1179-y

Keywords

Navigation