Skip to main content

Advertisement

Log in

Experimental investigation of thermal contact conductance for nominally flat metallic contact

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

A unique experimental set-up was fabricated to carry out axial heat flow steady state experiments for the assessment of thermal contact conductance (TCC) at the interface of two materials. Three different materials (copper, brass and stainless steel) were selected for the experiments considering their mechanical and thermal properties. Heat transfer experiments were performed in vacuum environment (0.045 torr) to find out solid spot contact conductance for nominally flat surfaces with different surface roughness (1–5 μm) for each specimen under several load conditions (0.6–15 MPa). A precise estimation of TCC for the interface of sets of similar materials was one of the most important results of this research. The effects of the surface roughness, the material properties and the load conditions (nominal interface pressure) have been studied and documented. Furthermore, the experimental results of solid spot contact conductance were compared with four theoretical models, showing their limitations to make a precise estimation of the TCC in the range of the used parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Nominal contact area

A r :

Real contact area

E :

Modulus of elasticity

E′:

Reduced modulus of elasticity, \(E^{\prime } = \left[ {\left( {\left( {1 - \nu_{1}^{2} } \right)/E_{1} } \right) + \left( {\left( {1 - \nu_{2}^{2} } \right)/E_{2} } \right)} \right]^{ - 1}\)

h c :

Solid spot conductance

\(\bar{h}_{c}\) :

Normalized solid spot contact conductance, \(\bar{h}_{c} = {{\left( {h_{c} R_{q} } \right)} \mathord{\left/ {\vphantom {{\left( {h_{c} R_{q} } \right)} {\left( {mk} \right)}}} \right. \kern-0pt} {\left( {mk} \right)}}\)

h g :

Gap conductance

h j :

Joint thermal contact conductance

h r :

Radiation heat transfer coefficient

ΔT :

Temperature drop across the interface

H :

Vickers hardness

k :

Effective thermal conductivity, \(k = 2k_{1} k_{2} /\left( {k_{1} + k_{2} } \right)\)

m :

Effective arithmetic average slope, \(m = \sqrt {\left( {m_{1}^{2} + m_{2}^{2} } \right)}\)

\(\bar{P}\) :

Normalized pressure, \(\bar{P} = {P \mathord{\left/ {\vphantom {P H}} \right. \kern-0pt} H}\)

P :

Applied pressure

Q :

Heat flow rate

R q :

Effective root mean square roughness, \(R_{q} = \sqrt {\left( {R_{q1}^{2} + R_{q2}^{2} } \right)}\)

\(U_{{Q_{1} }} ,U_{{Q_{2} }}\) :

Uncertainties in the estimation of heat fluxes, Q 1 and Q 2

ν :

Poisson’s ratio

ɛ :

Emissivity

1:

Specimen 1

2:

Specimen 2

References

  1. Madhusudana CV (2000) Accuracy in thermal contact conductance experiments—the effect of heat losses to the surrounding. Int Commun Heat Mass Transf 27(6):877–891

    Article  Google Scholar 

  2. Sunil Kumar S, Ramamurthi K (2003) Influence of flatness and waviness of rough surfaces on surface contact conductance. Trans ASME J Heat Transf 125:394–402

    Article  Google Scholar 

  3. Madhusudana CV (1996) Thermal contact conductance. Mechanical engineering series. Springer, New York

    Book  Google Scholar 

  4. Woodland S, Crocombe AD, Chew JW et al (2011) A new method for measuring thermal contact conductance—experimental technique and results. J Eng Gas Turbines Power 7:071601-1–071601-8

    Google Scholar 

  5. Bahrami M, Culham J, Yovanovich MM et al (2006) Review of thermal joint resistance models for nonconforming rough surfaces. Trans ASME Appl Mech Rev 59:1–12

    Article  Google Scholar 

  6. Yuncu H (2006) Thermal contact conductance of nominally flat surfaces. Heat Mass Transf 43:1–5

    Article  Google Scholar 

  7. Nishino K, Yamashita S, Torri K (1995) Thermal contact conductance under low applied load in a vacuum environment. Exp Therm Fluid Sci 10:258–271

    Article  Google Scholar 

  8. Yovanovich MM (2005) Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Trans Compon Packag Technol 28(2):182–206

    Article  Google Scholar 

  9. Hasselström AKJ, Nilsson UE (2012) Thermal contact conductance in bolted joints. Diploma work. Chalmers University of Technology Gothenburg, Sweden

    Google Scholar 

  10. Bahrami M, Culham J, Yovanovich MM et al (2004) Thermal contact resistance of nonconforming rough surfaces, part 2: thermal model. J Thermophys Heat Transf 18(2):218–227

    Article  Google Scholar 

  11. Greenwood JA, Tripp JH (1967) The elastic contact of rough spheres. ASME J Appl Mech 89(1):153–159

    Article  Google Scholar 

  12. Cooper MG, Mikic BB, Yovanovich MM (1969) Thermal contact conductance. Int J Heat Mass Transf 12:279–300

    Article  Google Scholar 

  13. Whitehouse DJ, Archard JF (1970) The properties of random surfaces of significance in their contact. Proc R Soc London A316:97–121

    Article  Google Scholar 

  14. Mikic BB (1974) Thermal contact conductance; theoretical considerations. Int J Heat Mass Transf 17:205–214

    Article  Google Scholar 

  15. Yovanovich MM (1981) New contact and gap correlations for conforming rough surfaces. AIAA 16th Thermophysics Conference, California, 23–25 June, 1981

  16. Sridhar MR, Yovanovich MM (1996) Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments. ASME J Heat Transf 118:3–9

    Article  Google Scholar 

  17. Singhal V, Litke PJ, Black AF et al (2005) An experimentally validated thermo-mechanical model for the prediction of thermal contact conductance. Int J Heat Mass Transf 48:5446–5459

    Article  Google Scholar 

  18. Lewis DV, Perkins HC (1968) Heat transfer at the interface of stainless steel and aluminum—the conditions on the directional effect. Int J Heat Mass Transf 11:1371–1383

    Article  Google Scholar 

  19. Bi D, Chen H, Tian Y (2012) Influences of temperature and contact pressure on thermal contact resistance at interfaces at cryogenic temperatures. Cryogenics 52:403–409

    Article  Google Scholar 

  20. Jeevanashankara Madhusudana C, Kulkarni MB (1990) Thermal contact conductances of metallic contacts at low loads. Appl Energy 35:151–164

    Article  Google Scholar 

  21. Song S, Yovanovich MM, Goodman FO (1993) Thermal gap conductance of conforming surfaces in contact. ASME J Heat Transf 115:533–540

    Article  Google Scholar 

  22. Mochizuki H, Quaiyum MA (1994) Contact conductance between cladding/pressure tube and pressure tube/calandria tube of advanced thermal reactor (ATR). J Nucl Sci Technol 31(7):726–734

    Article  Google Scholar 

  23. Mcwaid T, Marschall E (1992) Thermal contact resistance across pressed metal contacts in a vacuum environment. Int J Heat Mass Transf 35(11):2911–2920

    Article  Google Scholar 

  24. Yang S, Chen B, Hellstrom EE et al (1995) Thermal conductivity and contact conductance of BSCCO-2212 material. IEEE Trans Appl Supercond 5(2):1471–1474

    Article  Google Scholar 

  25. Lambert MA, Marotta EE, Fletcher LS (1995) The thermal contact conductance of hard and soft coat anodized aluminum. ASME J Heat Transf 117:270–275

    Article  Google Scholar 

  26. Milanez FH, Culham JR and Yovanovich MM (2002) Experimental study on thermal contact conductance of bead blasted SS 304 at light loads. 40th AIAA Aerospace Sciences Meeting, Reno, NV, 14–17 January, 2002

  27. Wahid SMS, Madhusudana CV, Leonardi E (2004) Solid spot conductance at low contact pressure. Exp Therm Fluid Sci 28:489–494

    Article  Google Scholar 

  28. Sunil Kumar S, Ramamurthi K (2004) Thermal contact conductance of pressed contacts at low temperatures. Cryogenics 44:727–734

    Article  Google Scholar 

  29. Xing L, Zhang LW, Zhang XZ et al (2010) Experimental investigation of contact heat transfer at high temperature based on steady-state heat flux method. Exp Heat Transf 23:107–116

    Article  Google Scholar 

  30. Misra P, Nagaraju J (2010) An experimental study to show the effect of thermal stress on thermal contact conductance at sub-megapascal contact pressures. ASME J Heat Transf 132:094501-1–094501-4

    Article  Google Scholar 

  31. Liu J, Feng H, Luo X, et al. (2010) A simple setup to test thermal contact resistance between interfaces of two contacted solid materials. 11th International Conference on Electronic Packaging Technology & High Density Packaging, pp 16–120

  32. Merrill CT, Garimella SV (2011) Measurement and prediction of thermal contact resistance across coated joints. Exp Heat Transf 24:179–200

    Article  Google Scholar 

  33. Hong J, Peng J, Li B (2013) An integrated mechanical–thermal predictive model of thermal contact conductance. ASME J Heat Transfer 135:041301-1–041301-8

    Article  Google Scholar 

  34. Ozisik MN, Orlande HRB (2000) Inverse heat transfer: fundamentals and applications. Taylor and Francis, New York

    Google Scholar 

  35. Huang CH, Ozisik MN, Swaf B (1991) Conjugate gradient method for determining unknown contact conductance during metal casting. Int J Heat Mass Transf 35(7):1779–1786

    Article  Google Scholar 

  36. Shojaeefard MH, Goudarzi K, Mazidi MS (2009) Inverse heat transfer problem of thermal contact conductance estimation in periodically contacting surfaces. J Therm Sci 18(2):150–159

    Article  Google Scholar 

  37. Fieberg C, Kneer R (2008) Determination of thermal contact resistance from transient temperature measurements. Int J Heat Mass Transf 51:1017–1023

    Article  MATH  Google Scholar 

  38. Xu R, Feng H, Zhao L, Xu L (2006) Experimental investigation of thermal contact conductance at low temperature based on fractal description. Int Commun Heat Mass Transf 33:811–818

    Article  Google Scholar 

  39. Sridhar MR, Yovanovich MM (1994) Review of elastic and plastic contact conductance models—comparison with experiment. J Thermophys Heat Transf 8(4):633–640

    Article  Google Scholar 

  40. Sridhar MR, Yovanovich MM (1996) Thermal contact conductance of tool steel and comparison with model. Int J Heat Mass Transf 39(4):831–839

    Article  Google Scholar 

  41. Xu R, Xu L (2005) An experimental investigation of thermal contact conductance of stainless steel at low temperatures. Cryogenics 45:694–704

    Article  Google Scholar 

  42. Jeng YR, Chen JT, Cheng CY (2003) Theoretical and experimental study of a thermal contact conductance model for elastic, elastoplastic and plastic deformation of rough surfaces. Tribol Lett 14(4):251–259

    Article  Google Scholar 

  43. Gopal V, Whiting MJ, Chew JW, Mills S (2013) Thermal contact conductance and its dependence on load cycling. Int J Heat Mass Transfer 66:444–450

    Article  Google Scholar 

  44. Rosochowska M, Chodnikiewicz K, Balendra R (2004) A new method of measuring thermal contact conductance. J Mater Process Technol 145:207–214

    Article  Google Scholar 

  45. Thomas TR (1975) Extrapolation errors in thermal contact resistance measurements. ASME Trans J Heat Transf 97(2):305–307

    Article  Google Scholar 

  46. Holman JP (2007) Experimental methods for engineers, 7th edn. McGraw-Hill, New York

    Google Scholar 

  47. Incropera FP, DeWitt DP (2006) Fundamentals of heat and mass transfer. Wiley, New York

    Google Scholar 

  48. CRC Hand Book (2004) The CRC hand book of mechanical engineering, 2nd edn. CRC Press, Taylor & Francis Group, New York

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Bhabha Atomic Research Centre (BARC), India for initiating this research activity in Mechanical & Industrial Engineering Department at Indian Institute of Technology Roorkee, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andallib Tariq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, A., Asif, M. Experimental investigation of thermal contact conductance for nominally flat metallic contact. Heat Mass Transfer 52, 291–307 (2016). https://doi.org/10.1007/s00231-015-1551-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1551-1

Keywords

Navigation