Skip to main content
Log in

Preparation, characteristics, convection and applications of magnetic nanofluids: A review

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Magnetic nanofluids (MNfs), the colloidal suspension of ferromagnetic nanomaterial, have been taken into research fascinatingly. After contemplating its distinctive interesting properties and unique eximious features it offers innumerous application not only in heat transfer field but also immensely prevalent in medical, biological, aerospace, electronics and solar sciences. This review paper epitomizes and perusing the research work done on heat transfer application of MNfs and encapsulate it for the future research support. Moreover, numerical and experimental, both the approaches has been included for the insightful analysis of phenomenon to apprehend augmentation in heat transfer by MNfs. This article first underlines the importance of appropriate methods of preparation of MNfs as well as its effects on the thermophysical properties of MNfs. Subsequently, the paper comprehended the descriptive analysis of augmentation of convection heat transfer and the effect of magnetic field on the behavior MNfs. Additionally, the effect of magnetic field intensity has been taken as a pertinent parameter and correlations have been developed for thermal conductivity, viscosity and heat transfer coefficient based on the reviewed data. The paper concluded with the tremendous applications of the MNfs and the futuristic plan to support the potential areas for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A s :

Surface area of solid particle

C p :

Specific heat

d :

Diameter

DIW :

De-ionized water

DW :

Distilled water

g :

Acceleration due to gravity

Gr :

Grashof number

Gr m :

Magnetic Grashof number

h :

Heat Transfer coefficient

H :

Magnetic field

H i :

Magnetic field gradient

I :

Current

k :

Thermal conductivity

K :

Pyromagnetic coefficient

M :

Magnetization

m :

Mass concentration

Nu :

Nusselt number

Pr :

Prandtl number

q :

Heat flux

r :

Solid particle radius

Ra :

Rayleigh number

Re :

Reynolds number

Ra m :

Magnetic Rayleigh number

R tot :

Total Rayleigh number

T :

Temperature

α :

thermal diffusivity

β :

thermal expansion coefficient

η :

dynamic viscosity

∇ :

gradient operator

η 0 :

Base fluid viscosity

ρ :

Density

μ 0 :

Vacuum permeability

Φ :

particle concentration

agg. :

Aggregate

avg. :

Average

bf :

base fluid

eff. :

Effective

nl :

Interfacial layer

max :

Maximum

nf :

Nanofluid

np :

Nanoparticles

p :

Particle

pred. :

Predicted

Ψ :

Sphericity

0 :

Base fluid

References

  1. Maxwell JC (1873) A treatise on electricity and magnetism. London

  2. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultrafine particles (dispersion of gamma-Al2O3, SiO2 and TiO2 ultra fine particles). Netsu Bussei 4:227–233

    Article  Google Scholar 

  3. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-newtonian flows. In ASME, New York

  4. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36(13):R167–R181

    Article  Google Scholar 

  5. Sharifi I, Shokrollahi H, Amiri S (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324(6):903–915

    Article  Google Scholar 

  6. Yu W, Xie H (2012) A Review on Nanofluids: Preparation, Stability Mechanisms. J Nanomater 2012:1–17

    Google Scholar 

  7. Mukherjee S, Paria S (2013) Preparation and Stability of Nanofluids-A Review. IOSR J Mech Civ Eng 9(2):63–69

    Article  Google Scholar 

  8. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  9. Peternele WS, Fuentes VM, Fascineli ML, Rodrigues da Silva J, Silva RC, Lucci CM, Bentes de Azevedo R (2014) Experimental Investigation of the Coprecipitation Method: An Approach to Obtain Magnetite and Maghemite Nanoparticles with Improved Properties. J Nanomater 2014:1–10

    Article  Google Scholar 

  10. Saien J, Bamdadi H, Daliri S (2015) Liquid–liquid extraction intensification with magnetite nanofluid single drops under oscillating magnetic field. J Ind Eng Chem 21:1152–1159

    Article  Google Scholar 

  11. Aksenov VL, Avdeev MV, Balasoiu M, Bica D, Rosta L, Torok G, Vekas L (2003) Aggregation in non-ionic water-based ferrofluids by small-angle neutron scattering. J Magn Magn Mater 258-259:452–455

    Article  Google Scholar 

  12. Li Q, Xuan Y, Wang J (2005) Experimental investigations on transport properties of magnetic fluids. Exp Thermal Fluid Sci 30:109–116

    Article  Google Scholar 

  13. Bica D, Vekas L, Avdeev MV, Marinica O, Socoliucd V, Balasoiu M, Garamus VM (2007) Sterically stabilized water based magnetic fluids: Synthesis, structure and properties. J Magn Magn Mater 311:17–21

    Article  Google Scholar 

  14. Hong H, Wright B, Wensel J, Jin S, Ye XR, Roy W (2007) Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube. Synth Met 157:437–440

    Article  Google Scholar 

  15. Singh DK, Pandey DK, Yadav RR (2009) An ultrasonic characterization of ferrofluid. Ultrasonics 49:634–637

    Article  Google Scholar 

  16. Li Q, Xuan Y (2009) Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Thermal Fluid Sci 33:591–596

    Article  Google Scholar 

  17. Abareshi M, Goharshadi EK, Zebarjad SM, Fadafan HK, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322:3895-3901

  18. Yu W, Xie H, Chen L, Li Y (2010) Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method. Colloids Surf A Physicochem Eng Aspects 355:109–113

    Article  Google Scholar 

  19. Kudelcik J, Bury P, Kopcansky P, Timko M (2010) Dielectric breakdown in mineral oil ITO 100 based magnetic fluid. Phys Procedia 9:78–81

    Article  Google Scholar 

  20. Lajvardi M, Moghimi-Rad J, Hadi I, Gavili A, Isfahani TD, Zabihi F, Sabbaghzadeh J (2010) Experimental investigation for enhanced ferrofluid heat transfer under magnetic field effect. J Magn Magn Mater 322:3508–3513

    Article  Google Scholar 

  21. Abareshi M, Sajjadi SH, Zebarjad SM, Goharshadi EK (2011) Fabrication, characterization and measurement of viscosity of α -Fe2O3-glycerol nanofluids. J Mol Liq 163:27–32

    Article  Google Scholar 

  22. Rashin MN, Hemalatha J (2012) Magnetic and ultrasonic investigations on magnetite nanofluids. Ultrasonics 52:1024–1029

    Article  Google Scholar 

  23. Sundar LS, Ramana EV, Singh MK, De Sousa ACM (2012) Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chem Phys Lett 554:236–242

    Article  Google Scholar 

  24. Sundar LS, Kumar NTR, Naik MT, Sharma KV (2012) Effect of full length twisted tape inserts on heat transfer and friction factor enhancement with Fe3O4 magnetic nanofluid inside a plain tube: An experimental study. Int J Heat Mass Transf 55:2761–2768

    Article  Google Scholar 

  25. Gavili A, Isfahani TD, Sabbaghzadeh J (2012) The thermal conductivity of water base ferrofluids under magnetic field. Exp Thermal Fluid Sci 41:94–98

    Article  MATH  Google Scholar 

  26. Gu H, Tang X, Hong RY, Feng WG, Xie HD, Chen DX, Badami D (2013) Ubbelohde viscometer measurement of water-based Fe3O4 magnetic fluid prepared by coprecipitation. J Magn Magn Mater 348:88–92

    Article  Google Scholar 

  27. Rashin MN, Hemalatha J (2014) Magnetic and ultrasonic studies on stable cobalt ferrite magnetic nanofluid. Ultrasonics 54:834-840

  28. Karimi A, Afghahi SSS, Shariatmadar H, Ashjaee M (2014) Experimental investigation on thermal conductivity of MFe2O4 (M = Fe and Co) magnetic nanofluids under influence of magnetic field. Thermochim Acta 598:59–67

    Article  Google Scholar 

  29. Goharkhah M, Salarian A, Ashjaee M, Shahabadi M (2015) Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field. Powder Technol 274:258–267

    Article  Google Scholar 

  30. Bagheli S, Fadafan HK, Orimi RL, Ghaemi M (2015) Synthesis and experimental investigation of the electrical conductivity of water based magnetite nanofluids. Powder Technol 274:426–430

    Article  Google Scholar 

  31. Wang L, Wang Y, Yan X, Wang X, Feng B (2016) Investigation on viscosity of Fe3O4 nano fluid under magnetic field. Int Commun Heat Mass Transfer 72:23–28

    Article  Google Scholar 

  32. Sundar LS, Singh MK, Ramana EV, Singh B, Gracio J, Sousa ACM (2014) Enhanced Thermal Conductivity and Viscosity of Nanodiamond-Nickel Nanocomposite Nanofluids. Sci Rep 4

  33. Puliti G, Paolucci P, Sen M (2011) Nanofluids and their properties. Appl Mech Rev 64:1–23

    Google Scholar 

  34. Khurana D, Choudhary R, Subudhi S (2016) Investigation of thermal conductivity and viscosity of al2o3/water nanofuids using full factorial design and utility concept. Nano 11:1–10

    Article  Google Scholar 

  35. Khedkar RS, Kiran AS, Sonawane SS (2013) Thermo-physical properties measurement of water based Fe3O4 nanofluids. Carbon Sci Technol 5(1):187–191

    Google Scholar 

  36. Philip J, Shima PD, Raj B (2007) Enhancement of thermal conductivity in magnetite based nanofluid due to chainlike structures. Appl Phys Lett 91:1–4

    Google Scholar 

  37. Parekh K, Lee HS (2010) Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J Appl Phys 107:1–3

    Article  Google Scholar 

  38. Karimi A, Goharkhah M, Ashjaee M, Shafii MB (2015) Thermal Conductivity of Fe2O3 and Fe3O4 Magnetic Nanofluids Under the Influence of Magnetic Field. Int J Thermophys 36:2720–2739

    Article  Google Scholar 

  39. Sundar LS, Singh MK, Sousa AC (2013) Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transfer 44:7–14

    Article  Google Scholar 

  40. Philip J, Shima P (2012) Thermal properties of nanofluids. Adv Colloid Interf Sci 183-184:30–45

    Article  Google Scholar 

  41. Shima PD, Philip J (2011) Tuning of Thermal Conductivity and Rheology of Nanofluids Using an. J Phys Chem C 115:20097–20104

    Article  Google Scholar 

  42. Katiyar A, Dharb P, Nandi T, Das SK (2016) Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids. J Magn Magn Mater 419:588-599

  43. Crosser OK, Hamilton RL (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundamen 1:187–191

    Article  Google Scholar 

  44. Jeffrey DJ (1973) Conduction through a random suspension of spheres. In Proceedings of the Royal Society of London, London

  45. Bruggeman DAG (1936) Calculation of various physical constants of heterogeneous substances.II. Dielectric constants and conductivities of polycrystals of nonregular systems. Ann Phys 47:645–672

    Article  Google Scholar 

  46. Choi SUS, Yu W (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. J Nanopart Res 5:161–171

    Google Scholar 

  47. Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids–the effect of interfacial layer. J Nanopart Res 8:245–254

    Article  Google Scholar 

  48. Xue X, Xu WM (2005) A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys 90:298–301

    Article  Google Scholar 

  49. Choi SUS, Jang SP (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318

    Article  Google Scholar 

  50. Koo J, Kleinstreuer C (2005) Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids. Int Commun Heat Mass Transfer 32:1111–1118

    Article  Google Scholar 

  51. Gharagozloo PE, Goodson KE (2010) Aggregate fractal dimensions and thermal conduction in nanofluids. J Appl Phys 108

  52. Einstein A (1956) Investigations on the Theory of the Brownian Movement. Courier Corporation

  53. Kuntiz M (1926) An empirical formula for the relation between viscosity of solution and volume of solute. J Gen Physiol 9:715–725

    Article  Google Scholar 

  54. Robinson JV (1949) The viscosity of suspensions of spheres. J Phys Chem 53:1042–1056

    Article  Google Scholar 

  55. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117

    Article  MathSciNet  Google Scholar 

  56. Brinkman HC (1952) The Viscosity of Concentrated Suspensions and Solutions. J Chem Phys 20

  57. Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys 42:1–6

    Article  Google Scholar 

  58. Nurdin I, Yaacob II, Johan MR (2016) Enhancement of thermal conductivity and kinematic viscosity in magnetically controllable maghemite (c-Fe2O3) nanofluids. Exp Thermal Fluid Sci 77:265–271

    Article  Google Scholar 

  59. Shima PD, Philip J, Raj B (2009) Magnetically controllable nanofluid with tunable thermal conductivity and viscosity. Appl Phys Lett 95:1–3

    Article  Google Scholar 

  60. Malekzadeh A, Pouranfard AR, Hatami N, Banari AK, Rahimi MR (2016) Experimental Investigations on the Viscosity of Magnetic Nanofluids under the Influence of Temperature, Volume Fractions of Nanoparticles and External Magnetic Field. J Appl Fluid Mech 9(2):693–697

    Article  Google Scholar 

  61. Patel R (2012) Effective viscosity of magnetic nanofluids through capillaries. Phys Rev E 85:1–7

    Article  Google Scholar 

  62. Yang C, Bian X, Guo T, Zhang K, Liu Y (2014) Investigation of Fe3O4 Aqueous Ferrofluids Before and After Freezing. Soft Materials 12:346–351

    Article  Google Scholar 

  63. Sundar LS, Ramana EV, Singh MK, Sousa ACM (2015) Magnetic Field Induced Enhancement in Thermal Conductivity and Viscosity of Stabilized Vacuum Pump Oil (VPO)—Fe3O4 Magnetic Nanofluids. J Nanofluid 4:1–9

    Article  Google Scholar 

  64. McTague JP (1969) Magnetoviscosity of Magnetic Colloids. J Chem Phys 51(1):133–136

    Article  Google Scholar 

  65. Katiyar A, Dhar P, Das SK, Nandi T (2015) Near–field magnetostatics and Neel–Brownian interactions mediated magnetorheological characteristics of highly stable nano–ferrocolloids. Soft Matter 11(8):1614–1627

    Article  Google Scholar 

  66. Rosensweig RE, Kaiser R, Miskolczy G (1968) Viscosity of Magnetic Fluid in a Magnetic Field. J Colloid Interface Sci 29:680–686

    Article  Google Scholar 

  67. Hall WF, Busenberg SN (1969) Viscosity of Magnetic Suspensions. J Chem Phys 51:137–144

    Article  Google Scholar 

  68. Shliomis MI (1972) Effective Viscosity of Magnetic Suspensions. Sov Phys JETP 34:1291–1294

    Google Scholar 

  69. Shliomis MI, Morozov KI (1994) Negative viscosity of ferrofluid under alternating magnetic field. Phys Fluids 6:2855–2861

    Article  MATH  Google Scholar 

  70. Wagh DK, Avashia A (1996) On the viscosity of a magnetic fluid. J Magn Magn Mater 153:359–365

    Article  Google Scholar 

  71. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB (2016) Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes. J Mech Sci Technol 300:809–815

    Article  Google Scholar 

  72. Putra N, Roetzel W, Das SK (2003) Natural convection of nano-fluids. Heat Mass Transf 39:775–784

    Article  MATH  Google Scholar 

  73. Hu Y, He Y, Qi C, Jiang B, Schlaberg HI (2014) Experimental and numerical study of natural convection in a square enclosure filled with nanofluid. Int J Heat Mass Transf 78:380–392

    Article  Google Scholar 

  74. Choudhary R, Subudhi S (2016) Aspect ratio dependence of turbulent natural convection in Al2O3/water nanofluids. Appl Therm Eng 108:1095–1104

    Article  Google Scholar 

  75. Volker T, Blums E, Odenbach S (2007) Heat and mass transfer phenomena in magnetic fluids. GAMM-Mitteilungen 30:185–194

    Article  MathSciNet  MATH  Google Scholar 

  76. Yamaguchi H, Zhang X-R, Niu X-D, Yoshikawa K (2010) Thermomagnetic natural convection of thermo-sensitive magnetic fluids in cubic cavity with heat generating object inside. J Magn Magn Mater 322:698–704

    Article  Google Scholar 

  77. Jin L, Zhang X-R (2013) Analysis of temperature-sensitive magnetic fluids in a porous square cavity depending on different porosity and Darcy number. Appl Therm Eng 50:1–11

    Article  Google Scholar 

  78. Blums E, Mezulis A, Kronkalns G (2008) Magnetoconvective heat transfer from a cylinder under the influence of a nonuniform magnetic field. J Phys Condens Matter 20:1–5

    Article  Google Scholar 

  79. Zablotsky D, Mezulis A, Blums E (2009) Surface cooling based on the thermomagnetic convection: Numerical simulation and experiment. Int J Heat Mass Transf 52:5302–5308

    Article  Google Scholar 

  80. Engler H, Lange A, Borin D, Odenbach S (2013) Hindrance of thermomagnetic convection by the magnetoviscous effect. Int J Heat Mass Transf 60:499–504

    Article  Google Scholar 

  81. Ganguly R, Sen S, Puri IK (2004) Thermomagnetic convection in a square enclosure using a line dipole. Phys Fluids 16:2228–2236

    Article  MATH  Google Scholar 

  82. Aursanda E, Gjennestad MA, Lervåg KY, Lund H (2016) Potential of enhancing a natural convection loop with a thermomagnetically pumped ferrofluid. J Magn Magn Mater 417:148–159

    Article  Google Scholar 

  83. Aquino R, Depeyrot J, Sousa MH, Tourinho FA, Dubois E, Prezynski R (2005) Magnetization temperature dependence and freezing of surface spins in magnetic fluids based on ferrite nanoparticles. Phys Rev B 72:1-10

  84. Sawada T, Kikura H, Saito A, Tanahashi T (1993) Natural Convection of a Magnetic Fluid in Concentric Horizontal Annuli under Nonuniform Magnetic Fields. Exp Thermal Fluid Sci 7:212–220

    Article  Google Scholar 

  85. Krakov MS, Nikiforov IV (2002) To the influence of uniform magnetic field on thermomagnetic convection in square cavity. J Magn Magn Mater 252:209–211

    Article  Google Scholar 

  86. Mahmoudi A, Mejri I, Abbassi MA, Omri A (2014) Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution. Powder Technol 256:257–271

    Article  Google Scholar 

  87. Yamaguchi H, Zhang Z, Shuchi S, Shimada K (2002) Heat transfer characteristics of magnetic fluid in a partitioned rectangular box. J Magn Magn Mater 252:203–205

    Article  Google Scholar 

  88. Yamaguchi H, Kobori I, Uehata Y, Shimada K (1999) Natural convection of magnetic #uid in a rectangular box. J Magn Magn Mater 201:264–267

    Article  Google Scholar 

  89. Wen C-Y, Chen C-Y, Yang S-F (2002) Flow visualization of natural convection of magnetic fluid in a rectangular Hele-Shaw cell. J Magn Magn Mater 252:206–208

    Article  Google Scholar 

  90. Fornalik-Wajs E, Filar P, Wajs J, Roszko A, Pleskacz L, Ozoe H (2014) Flow structure, heat transfer and scaling analysis in the case of thermo-magnetic convection in a differentially heated cylindrical enclosure. J Phys Conf Ser 530

  91. Kikura H, Sawada T, Tanahashi T (1993) Natural convection of a magnetic fluid in a cubic enclosure. J Magn Magn Mater 122:315–318

    Article  Google Scholar 

  92. Snyder SM, Cader T, Finlayson BA (2003) Finite element model of magnetoconvection of a ferrofluid. J Magn Magn Mater 262:269–279

    Article  Google Scholar 

  93. Ahmoudii A, Mejrii I, Abbassii MA, Omri A (2014) Lattice Boltzmann simulation of MHD natural convection in a nanofluid filled cavity with linear temperature distribution. Composite Materials & Renewable Energy Applications (ICCMREA), pp 1–4

  94. Mejri I, Mahmoudi A (2015) MHD natural convection in a nanofluid-filled open enclosure with a sinusoidal boundary condition. Chem Eng Res Des 98:1–16

    Article  Google Scholar 

  95. Mahmoudi A, Mejri I, Omri A (2016) Study of natural convection cooling of a nanofluid subjected to a magnetic field. Physica A 451:333–348

    Article  MathSciNet  Google Scholar 

  96. Roszko A, Fornalik-Wajs E, Donizak J, Wajs J, Kraszewska A, Pleskacz L, Kenjeres S (2014) Magneto-thermal convection of low concentration nanofluids. MATEC Web Conf 18

  97. Mansour MA, Bakier AY, Bakeir MAY (2013) MHD Natural convection in the localized heat sources of an inclined trapezoidal Nanofluid-filled enclosure. Am J Eng Res (AJER) 02:140–161

    Google Scholar 

  98. Sourtiji E, Hosseinizadeh SF (2012) Heat transfer augmentation of magnetohydrodynamics natural convection in L-shaped cavities utilizing nanofluids. Therm Sci 16:489–501

    Article  Google Scholar 

  99. Ece MC, Büyük E (2006) Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls. Fluid Dyn Res 38:564–590

    Article  MATH  Google Scholar 

  100. Ashorynejad HR, Mohamad AA, Sheikholeslami M (2013) Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int J Therm Sci 64:240–250

    Article  Google Scholar 

  101. Battira M, Bessaih R (2016) Radial and Axial Magnetic Fields Effects on Natural Convection in a Nanofluid-filled Vertical Cylinder. J Appl Fluid Mech 9:407–418

    Article  Google Scholar 

  102. Mahmoudi AH, Pop I, Shahi M (2012) Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. Int J Therm Sci 59:126–140

    Article  Google Scholar 

  103. Bahiraei M, Hangi M (2014) Natural Convection of Magnetic Nanofluid in a Cavity under Non-uniform Magnetic Field: A Novel Application. J Supercond Nov Magn 27:587–594

    Article  Google Scholar 

  104. Motozawa M, Chang J, Sawada T, Kawaguchi Y (2010) Effect of Magnetic Field on Heat Transfer in Rectangular Duct Flow of a Magnetic Fluid. Phys Procedia 9:190–193

    Article  Google Scholar 

  105. Sundar LS, Naik MT, Sharma KV, Singh MK, Reddy TCS (2012) Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp Thermal Fluid Sci 37:65–71

    Article  Google Scholar 

  106. Azizian R, Doroodchi E, McKrell T, Buongiorno J, Hu L, Moghtaderi B (2014) Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. Int J Heat Mass Transf 68:94–109

    Article  Google Scholar 

  107. Ghofrani A, Dibaei MH, Sima AH, Shafii MB (2013) Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field. Exp Thermal Fluid Sci 49:193–200

    Article  Google Scholar 

  108. Goharkhah M, Ashjaee M (2014) Effect of an alternating nonuniform magnetic field on ferrofluid flow and heat transfer in a channel. J Magn Magn Mater 362:80–89

    Article  Google Scholar 

  109. Bonab MHD, Shafii MB, Nobakhti MH (2015) Experimental and numerical investigation of fully developed forced convection of water-based Fe3O4 nanofluid passing through a tube in the presence of an alternating magnetic field. Adv Mech Eng 7:1–9

    Google Scholar 

  110. Esmaeili E, Ghazanfari R, Farsad S (2015) Convective heat transfer enhancement of the Water-based magnetite nanofluids in the presence of a 3-D low-intensity magnetic field. Int J Nano Dimens 6:141–151

    Google Scholar 

  111. Shahsavar A, Saghafian M, Salimpour MR, Shafii MB (2016) Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields. Exp Thermal Fluid Sci 76:1–11

    Article  Google Scholar 

  112. Aminossadati SM, Raisi A, Ghasemi B (2011) Effects of magnetic field on nanofluid forced convection in a partially heated microchannel. Int J Non Linear Mech 46:1373–1382

    Article  Google Scholar 

  113. Karimipour A, Afrand M (2015) Magnetic field effects on the slip velocity and temperature jump of nanofluid forced convection in a microchannel. J Mech Eng Sci :1–16

  114. Lo KJ, Weng HC (2015) Convective Heat Transfer of Magnetic Nanofluids in a Microtube. Smart Science 3:56–64

    Article  Google Scholar 

  115. Soltanipour H, Khalilarya S, Motlagh SY, Mirzaee I (2016) The effect of position-dependent magnetic fild on nanofluid forced convective heat transfer and entropy generation in a microchannel. J Braz Soc Mech Sci Eng :1–11

  116. Ashjaee M, Goharkhah M, Khadem LA, Ahmadi R (2015) Effect of magnetic fild on the forced convection heat transfer and pressure drop of a magnetic nanoflid in a miniature heat sink. Heat Mass Transf 51:953–964

    Article  Google Scholar 

  117. Moreau M (1990) Magnetohydrodynamics. Kluwer Acadamic Publishers, The Netherlands

    Book  MATH  Google Scholar 

  118. Fumoto K, Yamagishi H (2007) A mini heat transport device based on thermosensitive magnetic fluid. Nanoscale Microscale Thermophys Eng 11:201–210

    Article  Google Scholar 

  119. Nakatsuka K, Jeyadevan B, Neveu S, Koganezawa H (2002) The magnetic fluid for heat transfer applications. J Magn Magn Mater 252:360–362

    Article  Google Scholar 

  120. Yamaguchi H, Sumiji A, Shuchi S, Yonemura T (2004) Characteristics of thermo-magnetic driven motor using magnetic fluid. J Magn Magn Mater 272–276:2362–2364

    Article  Google Scholar 

  121. Lian W, Xuan Y, Li Q (2009) Characterization of miniature automatic energy transport devices based on the thermomagnetic effect. Energy Convers Manag 50:35–42

    Article  Google Scholar 

  122. Li Q, Lian W, Sun H, Xuan Y (2008) Investigation on operational characteristics of a miniature automatic cooling device. Int J Heat Mass Transf 51:5033–5039

    Article  MATH  Google Scholar 

  123. Xuan Y, Lian W (2011) Electronic cooling using an automatic energy transport device based on thermomagnetic effect. Appl Therm Eng 31:1487–1494

    Article  Google Scholar 

  124. Stoian FD, Holotescu S (2014) Experimental study of cooling enhancement using a Fe3O4 magnetic nanofluid, in an applied magnetic field. J Phys Conf Ser 547

  125. Scherer C, Neto AMF (2005) Ferrofluids: Properties and Applications. Braz J Phys 35:718–727

    Article  Google Scholar 

  126. Antosova A, Siposova K, Koneracka M, Zavisova V, Daxnerova Z, Vavra I, Fedunova D, Bagelova J, Kopcansky P, Gazova Z (2010) Magnetic fluid- a novel approach to treat amyloid-related diseases. Phys Procedia 9:262–265

    Article  Google Scholar 

  127. Raj K, Skowitz R (1990) Commercial applications of ferrofluids. J Magn Magn Mater 85:233–245

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Subudhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Subudhi, S. Preparation, characteristics, convection and applications of magnetic nanofluids: A review. Heat Mass Transfer 54, 241–265 (2018). https://doi.org/10.1007/s00231-017-2114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2114-4

Navigation