Skip to main content
Log in

Slow Mitochondrial COI Sequence Evolution at the Base of the Metazoan Tree and Its Implications for DNA Barcoding

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The evolution rates of mtDNA in early metazoans hold important implications for DNA barcoding. Here, we present a comprehensive analysis of intra- and interspecific COI variabilities in Porifera and Cnidaria (separately as Anthozoa, Hydrozoa, and Scyphozoa) using a data set of 619 sequences from 224 species. We found variation within and between species to be much lower in Porifera and Anthozoa compared to Medusozoa (Hydrozoa and Scyphozoa), which has divergences similar to typical metazoans. Given that recent evidence has shown that fungi also exhibit limited COI divergence, slow-evolving mtDNA is likely to be plesiomorphic for the Metazoa. Higher rates of evolution could have originated independently in Medusozoa and Bilateria or been acquired in the Cnidaria + Bilateria clade and lost in the Anthozoa. Low identification success and substantial overlap between intra- and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding. Caution is also advised for Porifera and Hydrozoa because of relatively low identification success rates as even threshold divergence that maximizes the “barcoding gap” does not improve identification success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  • Barrett RDH, Hebert PDN (2005) Identifying spiders through DNA barcodes. Can J Zool 83:481–491

    Article  CAS  Google Scholar 

  • Borchiellini C, Manuel M, Alivon E, Boury-Esnault N, Vacelet J, Le Parco Y (2001) Sponge paraphyly and the origin of Metazoa. J Evol Biol 14:171–179

    Article  Google Scholar 

  • Boscolo HK, Silveira FL (2005) Reproductive biology of Palythoa caribaeorum and Protopalythoa variabilis (Cnidaria, Anthozoa, Zoanthidea) from the southeastern coast of Brazil. Brazil J Biol 65:29–41

    CAS  Google Scholar 

  • Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW (1992) Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Proc Natl Acad Sci USA 89:8750–8753

    Article  PubMed  CAS  Google Scholar 

  • Brown WM (1983) Evolution of animal mitochondrial DNA. In: Nei M, Koehn RK (eds) Evolution of genes and proteins. Sinauer Associates, Sunderland, MA, pp 147–164

    Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci 76:1967–1971

    Article  PubMed  CAS  Google Scholar 

  • Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239

    Article  PubMed  CAS  Google Scholar 

  • Calderón I, Garrabou J, Aurelle D (2006) Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. J Exp Mar Biol Ecol 336:184–197

    Article  CAS  Google Scholar 

  • Dawid IB (1972) Evolution of mitochondrial DNA in Xenopus. Dev Biol 29:139–151

    Article  PubMed  CAS  Google Scholar 

  • Dawson MN (2005) Cyanea capillata is not a cosmopolitan jellyfish: morphological and molecular evidence for C. annaskala and C. rosea (Scyphozoa: Semaeostomeae: Cyaneidae) in south-eastern Australia. Invertebr Syst 19:361–370

    Article  Google Scholar 

  • Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200:92–96

    Article  PubMed  CAS  Google Scholar 

  • Duran S, Pascual M, Turon X (2004) Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Mar Biol 144:31–35

    Article  CAS  Google Scholar 

  • France SC, Hoover LL (2002) DNA sequences of the mitochondrial COI gene have low levels of divergence among deep-sea octocorals (Cnidaria: Anthozoa). Hydrobiologia 471:149–155

    Article  Google Scholar 

  • Fukami H, Knowlton N (2005) Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia). Coral Reefs 24:410–417

    Article  Google Scholar 

  • Fukami H, Omori M, Hatta H (2000) Phylogenetic relationships in the coral family Acroporidae, reassessed by inference from mitochondrial genes. Zool Sci 17:689–696

    Article  CAS  Google Scholar 

  • Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004a) Geographic difference in species boundaries among members of the Montastrea annularis complex based on molecular and morphological markers. Evolution 58:324–337

    Google Scholar 

  • Fukami H, Budd AF, Paulay G, Sole-Cava A, Chen CA, Iwao K, Knowlton N (2004b) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835

  • Govindarajan AF, Halanych KM, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222

    Article  CAS  Google Scholar 

  • Govindarajan AF, Boero F, Halanych KM (2006) Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Mol Phylogenet Evol 38:820–834

    Article  PubMed  CAS  Google Scholar 

  • Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol Evol Syst 35:229–256

    Article  Google Scholar 

  • Harris DJ (2003). Can you bank on GenBank? Trends Ecol Evol 18:317–319

    Article  Google Scholar 

  • Hebert PDN, Cywinska A., Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc Roy Soc Lond Ser B 270:313–321

    Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Roy Soc Lond Ser B 270: S96–S99

    Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:1657–1663

    Article  CAS  Google Scholar 

  • Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24

    Article  PubMed  CAS  Google Scholar 

  • Holland BS, Dawson MN, Crow GL, Hofmann DK (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128

    Article  Google Scholar 

  • Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN (2007) Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7:535–543

    Article  CAS  Google Scholar 

  • Kim J, Kim W, Cunningham CW (1999) A new perspective on lower metazoan relationships from 18S rDNA sequences. Mol Biol Evol 16:423–427

    PubMed  CAS  Google Scholar 

  • Knowlton N, Maté J, Guzmán HM, Rowan R, Jara J (1997) Direct evidence for reproductive isolation among the three species of the Montastraea annularis complex in Central America (Panamá and Honduras). Mar Biol 127:705–711

    Article  Google Scholar 

  • Lavrov DV, Forget L, Kelly M, Lang BF (2005) Mitochondrial genomes of two demosponges provide insights into an early stage of animal evolution. Mol Biol Evol 22:1231–1239

    Article  PubMed  CAS  Google Scholar 

  • Lefébure T, Douady CJ, Gouy M, Gibert J (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol 40:435–447

    Article  PubMed  CAS  Google Scholar 

  • McClellan DA, Woolley S (2004) AlignmentHelper, version 1.0. Brigham Young University, Provo, UT

    Google Scholar 

  • McFadden CS, Tullis ID, Hutchinson MB, Winner K, Sohm JA (2004) Variation in coding (NADH dehydrogenase subunits 2, 3, and 6) and noncoding intergenic spacer regions of the mitochondrial genome in Octocorallia (Cnidaria: Anthozoa). Mar Biotechnol 6:516–526

    Article  PubMed  CAS  Google Scholar 

  • McFadden CS, France SC, Sánchez JA, Alderslade P (2006) A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol 41:513–527

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Weil E, Szmant AM (1999) Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol 1:89–97

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci 98:9707–9712

    Article  PubMed  CAS  Google Scholar 

  • Medina M, Collins AG, Takaoka TL, Kuehl JV, Boore JL (2006) Naked corals: skeleton loss in Scleractinia. Proc Natl Acad Sci 103:9096–9100

    Article  PubMed  CAS  Google Scholar 

  • Meier R, Kwong S, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728

    Article  PubMed  Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:229–2238

    Article  CAS  Google Scholar 

  • Moritz C, Dowling TE, Brown WM (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst 18:69–292

    Article  Google Scholar 

  • Neigel J, Domingo A, Stake J (2007) DNA barcoding as a tool for coral reef conservation. Coral Reefs 26:487–499

    Article  Google Scholar 

  • Pont-Kingdon GA, Okada NA, Macfarlane JL, Beagley CT, Wolstenholme DR, Cavaliersmith T, Clarkwalker GD (1995) A coral mitochondrial mutS gene. Nature 375:109–111

    Article  PubMed  CAS  Google Scholar 

  • Pont-Kingdon GA, Okada NA, Macfarlane JL, Beagley CT, Watkins-Sims CD, Cavalier-Smith T, Clark-Walker GD, Wolstenholme DR (1998) Mitochondrial DNA of the coral Sarcophyton glaucum contains a gene for a homologue of bacterial MutS: a possible case of gene transfer from the nucleus to the mitochondrion. J Mol Evol 46:419–431

    Article  PubMed  CAS  Google Scholar 

  • Pont-Kingdon GA, Vassort CG, Warrior R, Okimoto R, Beagley CT, Wolstenholme DR (2000) Mitochondrial DNA of Hydra attenuata (Cnidaria): a sequence that includes an end of one linear molecule and the genes for l-rRNA, tRNAf-Met, tRNATrp, COII, and ATPase8. J Mol Evol 51:404–415

    PubMed  CAS  Google Scholar 

  • Reimer JD, Ono S, Fujiwara Y, Takishita K, Tsukahara J (2004) Reconsidering Zoanthus spp. diversity: molecular evidence of conspecifity within four previously presumed species. Zool Sci 21:517–525

    Article  PubMed  CAS  Google Scholar 

  • Reimer JD, Ono S, Takishita K, Tsukahara J, Maruyama T (2006) Molecular evidence suggesting species in the zoanthid genera Palythoa and Protopalythoa (Anthozoa: Hexacorallia) are congeneric. Zool Sci 23:87–94

    Article  PubMed  CAS  Google Scholar 

  • Sargent TD, Jamrich M, Dawid IB (1986) Cell interactions and the control of gene activity during early development of Xenopus laevis. Dev Biol 114:238–246

    Article  PubMed  CAS  Google Scholar 

  • Schröder HC, Efremova SM, Itskovich VB, Belikov S, Masuda Y, Krasko A, Müller IM, Müller WEG (2003) Molecular phylogeny of the freshwater sponges in Lake Baikal. J Zool System Evol Res 41:80–86

    Article  Google Scholar 

  • Schroth W, Jarms G, Streit B, Schierwater B (2002) Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp. BMC Evol Biol 2:1

    Article  PubMed  Google Scholar 

  • Seifert KA, Samson RA, deWaard JR, Houbraken J, André Lévesque C, Moncalvo JM, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci 104:3901–3906

    Article  PubMed  CAS  Google Scholar 

  • Shearer TL, Coffroth MA (2007). Barcoding corals: limited by interspecific divergence, not intraspecific variation. Mol Ecol Resour (in press). doi: 10.1111/j.1471-8286.2007.01996.x

  • Shearer TL, van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487

    Article  PubMed  CAS  Google Scholar 

  • Smith PJ, McVeagh SM, Mingoia JT, France SC (2004) Mitochondrial DNA sequence variation in deep-sea bamboo coral (Keratoisidinae) species in the southwest and northwest Pacific Ocean. Mar Biol 144:253–261

    Article  CAS  Google Scholar 

  • Tseng CC, Wallace CC, Chen CA (2005) Mitogenomic analysis of Montipora cactus and Anacropora matthai (cnidaria; scleractinia; acroporidae) indicates an unequal rate of mitochondrial evolution among Acroporidae corals. Coral Reefs 24:502–508

    Article  Google Scholar 

  • van Oppen MJH, Willis BL, Miller DJ (1999) Atypically low rate of cytochrome b evolution in the scleractinian coral genus Acropora. Proc Roy Soc Lond Ser B 266:179–183

    Article  Google Scholar 

  • van Oppen MJH, Catmull J, McDonald BJ, Hislop NR, Hagerman RJ, Miller DJ (2002) The mitochondrial genome of Acropora tenuis (Cnidaria; Scleractinia) contains a large group I intron and a candidate control region. J Mol Evol 55:1–13

    Article  PubMed  CAS  Google Scholar 

  • van Oppen MJH, Koolmees EM, Veron JEN (2004) Patterns of evolution in the scleractinian coral genus Montipora (Acroporidae). Mar Biol 144:9–18

    Article  Google Scholar 

  • Vilgalys R (2003) Taxonomic misidentification in public DNA databases. New Phytol 160:4–5

    Article  CAS  Google Scholar 

  • Watkins RF, Beckenbach AT (1999) Partial sequence of a sponge mitochondrial genome reveals sequence similarity to Cnidaria in cytochrome oxidase subunit II and the large ribosomal RNA subunit. J Mol Evol 48:542–554

    Article  PubMed  CAS  Google Scholar 

  • Wörheide G (2006) Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Guanyang Zhang for initial discussion and comments, as well as Gaurav Vaidya for customization of TaxonDNA for our use. Hironobu Fukami provided valuable advice on DNA extraction and PCR. We appreciate the help and support of members of the Evolutionary Biology and Marine Biology laboratories, National University of Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danwei Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, D., Meier, R., Todd, P.A. et al. Slow Mitochondrial COI Sequence Evolution at the Base of the Metazoan Tree and Its Implications for DNA Barcoding. J Mol Evol 66, 167–174 (2008). https://doi.org/10.1007/s00239-008-9069-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-008-9069-5

Keywords

Navigation