Skip to main content
Log in

Effects of Pharmaceuticals on Aquatic Invertebrates. Part I. The Antiepileptic Drug Carbamazepine

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The effects of the antiepileptic drug carbamazepine (CBZ) were studied in three freshwater invertebrate species representing different taxonomic groups, life histories, and habitats in aquatic ecosystems. The oligochaete Lumbriculus variegatus was exposed by way of CBZ-spiked sediments at nominal concentrations between 0.625 and 10 mg/kg dry weight (dw) for 28 days. At the end of the test, reproduction and biomass were monitored as end points. The nonbiting midge Chironomus riparius was exposed to CBZ in a series of tests at nominal CBZ concentrations in sediment ranging from 0.16 to 100 mg/kg dw at 20°C and 23°C. Emergence and gender ratio were monitored at the end of the test. The freshwater snail Potamopyrgus antipodarum as the third test species was used in a chronic reproduction test for 28 days at aqueous CBZ concentrations from 0.4 to 250 mg/L. Whereas for the oligochaete and the snail no effects were observed, C. riparius exhibited a significant and concentration-dependent decrease of emergence in all test series. No observed effect concentrations and 10% effect concentrations were in the range of 33 to 140 and 70 to 210 μg/kg dw, respectively, based on measured CBZ concentrations in sediments. These low values indicate that CBZ may pose a potential threat for the survival of C. riparius and probably also for other aquatic insect populations in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andreozzi R, Marotta R, Pinto G, Pollio A (2002) Carbamazepine in water: Persistence in the environment, ozonation treatment and preliminary assessment on algal toxicity. Water Res 36:2869–2877

    Article  PubMed  Google Scholar 

  2. American Society for Testing and Materials (1995) E 1706-95a: Standard test methods for measuring the toxicity of sediment-associated contaminations with freshwater invertebrates. American Society for Testing and Materials, West Conshohocken, PA

    Google Scholar 

  3. Belfroid A, Leonards P (1996) Effect of ethinyl oestradiol on the development of snails and amphibians (abstract PO/508). Society of Environmental Toxicology and Chemistry 17th Annual Meeting, Washington, DC, November 1996

  4. Bertschy G, Bryois C, Bondolfi G, Velardi A, Budry P, Dascal D, et al. (1997) The association carbamazepine-mianserin in opiate withdrawl: A double blind pilot study versus clonidine. Pharmacol Res 35:451–456

    Article  PubMed  Google Scholar 

  5. Brinkhurst RO, Jamieson BGM (1971) Aquatic Oligochaeta of the World. Oliver and Boyd, Edinburgh, Great Britain

    Google Scholar 

  6. Brooks BW, Turner PK, Stanley JK, Weston JJ, Glidewell EA, Foran CM, et al. (2003a) Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52:135–142

    Article  PubMed  Google Scholar 

  7. Brust K, Licht O, Hultsch V, Jungmann D, Nagel R (2001) Effects of terbutryn on aufwuchs and Lumbriculus variegatus in artificial indoor streams. Environ Toxicol Chem 20:2000–2007

    Article  PubMed  Google Scholar 

  8. Clara M, Strenn B, Kreuzinger N (2002) Verhalten ausgewählter Pharmazeutika in der Abwasserreinigung. Wiener Mitteilungen 178:113–138

    Google Scholar 

  9. Clara M, Strenn B, Kreuzinger N (2004) Carbamazepine as a possible anthropogenic marker in the aquatic environment: Investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water Res 38:947-954

    Article  PubMed  Google Scholar 

  10. Cleuvers M (2002) Aquatische Ökotoxikologie ausgewählter Arzneimittel. Algentest und akuter Daphnientest. UWSF - Z Umweltchem Ökotox 14:85–89

    Google Scholar 

  11. Drewes JE, Heberer T, Reddersen K (2002) Fate of pharmaceuticals during indirect potable reuse. Water Sci Technol 46:73–80

    Google Scholar 

  12. Duft M, Tillmann M, Oehlmann J (2002) Ökotoxikologische Sedimentkartierung der großen Flüsse Deutschlands. Final report of R&D project 299 24 275. German Federal Environment Agency, Berlin, Germany

    Google Scholar 

  13. Duft M, Schulte-Oehlmann U, Tillmann M, Markert B, Oehlmann J (2003a) Toxicity of triphenyltin and tributyltin to the freshwater mudsnail Potamopyrgus antipodarum in a new sediment biotest. Environ Toxicol Chem 22:145–152

    Article  Google Scholar 

  14. Duft M, Schulte-Oehlmann U, Weltje L, Tillmann M, Oehlmann J (2003b) Stimulated embryo production as a parameter of estrogenic exposure via sediments in the freshwater mudsnail Potamopyrgus antipodarum. Aquat Toxicol 64:437–449

    Article  Google Scholar 

  15. Egeler P, Römbke J, Meller M, Knacker T, Franke C, Studinger G, et al (1997) Bioaccumulation of lindane and hexachlorobenzene to tubificid sludgeworms (Oligochaeta) under standardised laboratory conditions. Chemosphere 35:835-852

    Article  Google Scholar 

  16. Egeler P, Römbke J, Meller M, Knacker T, Nagel R (1999) Bioaccumulation test with tubificid sludgeworms in artificial media –: Development of a standardisable method. Hydrobiologia 406:271–280

    Article  Google Scholar 

  17. European Agency for the Evaluation of Medicinal Products (2003) Note for guidance on environmental risk assessment of medicinal products for human use. CPMP/SWP/4447/00 (draft)

  18. European Union (2003) Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market, Parts I, II and IV. European Communities, 2003. EUR 20418 EN/1

  19. Ferrari B, Paxeus N, Lo Giudice R, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: Study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 56:450–450

    Article  Google Scholar 

  20. Ferrari B, Mons R, Vollat B, Fraysse B, Paxeus N, Lo Giudice R, et al. (2004) Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environ Toxicol Chem 23:1344–1354

    Article  PubMed  Google Scholar 

  21. Fiedler HJ, Rösler HJ (1993) Spurenelemente in der Umwelt. Gustav Fischer Verlag, Stuttgart, Germany

    Google Scholar 

  22. Furlong ET, Kinney CA, Ferrer I, Werner SL, Cahill JD, Ratterman G (2004) Pharmaceuticals and personal-care products in solids: Analysis and field results for sediment, soil and biosolid samples. Preprints of Extended Abstracts presented at the ACS National Meeting, American Chemical Society, Division of Environmental Chemistry 44:1320-1323

    Google Scholar 

  23. Groenendijk D, Kraak MHS, Admiraal W (1999) Efficient shedding of accumulated metals during metamorphosis in metal-adapted populations of the midge Chironomus riparius. Environ Toxicol Chem 18:1225–1231

    Article  Google Scholar 

  24. Hatakeyama S (1987) Chronic effects of Cd on reproduction of Polypedilum nubifer (Chironomidae) through water and food. Environ Pollut 48:249–261

    Article  PubMed  Google Scholar 

  25. Heberer T (2002) Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol Lett 131:5–17

    Article  PubMed  Google Scholar 

  26. Heberer T, Reddersen K, Mechlinski A (2002) From municipal sewage to drinking water: Fate and removal of pharmaceuticals residues in the aquatic environment in urban areas. Water Sci Technol 46:81–86

    Google Scholar 

  27. Henry MG, Chester DN, Mauck WL (1986) Role to artificial burrows in Hexagenia toxicity tests: Recommendations for protocol development. Environ Toxicol Chem 5:553–559

    Google Scholar 

  28. Hubendick B (1950) The effectiveness of passive dispersal in Hydrobia jenkinsi. Zool Bidr Uppsala 28:493–504

    Google Scholar 

  29. Lam MW, Young CY, Brain RA, Johnson DJ, Hanson MA, Wilson CJ, et al. (2004) Aquatic persistence of eight pharmaceuticals in a microcosm study. Environ Toxicol Chem 23:1431–1440

    Article  PubMed  Google Scholar 

  30. Landsky PF, Halling-Sørensen B (1997) The toxic effect of the antibiotic metronidazole on aquatic organisms. Chemosphere 35:2553–2561

    Article  PubMed  Google Scholar 

  31. Leppänen MT, Kukkonen JVK (1998) Factors affecting feeding rate, reproduction and growth of the oligochaete Lumbriculus variegatus (Müller). Hydrobiologia 377:183–194

    Article  Google Scholar 

  32. Liebig M, (2005) Untersuchungen zu Umweltrisikoabschätzungen von Humanpharmaka und Inhaltsstoffen von Körperpflegeprodukten vor dem Hintergrund europäischer Bewertungskonzepte. Doctoral thesis, University Frankfurt am Main

  33. Litchfield J, Wilcoxon F (1949) A simplified method of ecological dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    Google Scholar 

  34. Löffler D (2003) Fate of human and veterinary pharmaceuticals in water/sediment: Test systems by analysis via LC-tandem MS and radio-TLC. Dissertation, Johannes Gutenberg University Mainz

  35. Löffler D, Ternes TA (2003) Analysis of acidic pharmaceuticals, antibiotics and ivermectin in river sediment using LC-tandem MS. J Chromatogr A 2021:133-144

    Article  Google Scholar 

  36. Löffler D, Roembke J, Meller M, Ternes TA (2004) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Tech (in press)

  37. McCahon CP, Pascoe D (1991) Brief-exposure of first and forth instar Chironomus riparius larvae to equivalent assumed doses of cadmium: Effects on adult emergence. Water Air Soil Pollut 60:396–403

    Article  Google Scholar 

  38. Metcalfe CD, Koenig BG, Bennie DT, Servos M, Ternes TA, Hirsch R (2003a) Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environ Toxicol Chem 22:2872–2880

    Article  Google Scholar 

  39. Metcalfe CD, Miao XS, Koenig BG, Struger J (2003b) Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada. Environ Toxicol Chem 22:2881–2889

    Article  Google Scholar 

  40. Montgomery SA, Schatzberg AF, Guelfi JD, Kaspar S, Nemeroff C, Swann A, et al. (2000) Pharmacotherapy of depression and mixed states in bipolar disorder. J Affect Disord 59:39–56

    Article  Google Scholar 

  41. Organisation for Economic Co-operation and Development (2002) OECD Guidelines for Testing of Chemicals - 308. Aerobic and Anaerobic Transformation in Aquatic Sediment Systems. Organisation for Economic Co-operation and Development, Paris, France

    Google Scholar 

  42. Organisation for Economic Co-operation and Development (2004) OECD Guidelines for Testing of Chemicals - 218. Sediment-Water Chironomid Toxicity Test Using Spiked Sediment, Organisation for Economic Co-operation and Development, Paris, France

    Google Scholar 

  43. Oetken M, Ludwichowski KU, Nagel R (2001) Validation of the preliminary EU concept of assessing the impact of chemicals to organisms in sediment by using selected substances. Report R&D project 29967411. German Federal Environment Agency, Berlin, Germany

    Google Scholar 

  44. Oetken M, Stachel B, Pfenninger M, Oehlmann J (2004) Impact of a flood disaster on sediment toxicity in a major river system–the Elbe flood 2002 as a case study. Environ Pollut 134:87–95

    Article  Google Scholar 

  45. Pfluger P, Prietz A, Wasserrab B, Koster C, Knörzer B, Dietrich D (2000) Untersuchungen zur aquatischen Toxizität und zur endokrinen Wirkung von Carbamazepin. Konstanz, EUREGIO Ökotoxikologie Service Labor, Universität Konstanz, pp 1–34

    Google Scholar 

  46. Phipps GL, Ankley GT, Benoit DA, Mattson VR (1993) Use of the aquatic oligochaete Lumbriculus variegatus for assessing the toxicity and bioaccumulation of sediment-associated contaminants. Environ Toxicol Chem 12:269–279

    Google Scholar 

  47. Ristola T, Pellinen J, Ruokolainen M, Kostamo A, Kukkonen JVK (1999) Effect of sediment type, feeding level, and larval density on growth and development of a midge (Chironomus riparius). Environ Toxicol Chem 18:756–764

    Article  Google Scholar 

  48. Sacher F, Lochow E, Bethmann D, Brauch HJ (1998) Vorkommen von Arzneimittelwirkstoffen in Oberflächengewässern. Vom Wasser 90:233-243

    Google Scholar 

  49. Sachs L, (1992) Angewandte Statistik. Volume 7. Auflage. Springer-Verlag, Berlin, Germany

    Google Scholar 

  50. Scharf S, Loos S, Uhl M, Kreuzinger N (2004) Untersuchung von Donausedimenten und Schwebstoffen auf ausgewählte organische Stoffe. Report BE-249. Federal Environment Agency, Vienna, Austria

    Google Scholar 

  51. Schulte-Oehlmann U, (1997) Fortpflanzungsstörungen bei Süß-und Brackwasserschnecken—Einfluß der Umweltchemikalie Tributylzinn. Wissenschaft und Technik Verlag, Berlin, Germany

    Google Scholar 

  52. Schulte-Oehlmann U, Tillmann M, Casey D, Duft M, Markert B, Oehlmann J (2001) Östrogenartige Wirkungen von Bisphenol A auf Vorderkiemerschnecken (Mollusca: Gastropoda: Prosobranchia). UWSF—Z Umweltchem Ökotox 13:319-333

    Google Scholar 

  53. Schulz R, (1997) Aquatische Ökotoxikologie von Insektiziden—Auswirkungen diffuser Insektizideinträge aus der Landwirtschaft auf Fließgewässerlebensgemeinschaften. Ecomed-Verlag, Landsberg/Lech

    Google Scholar 

  54. Schwabe U, Paffrath D (2003) Arzneiverordnungs—Report 2002. Springer-Verlag, Berlin, Germany

    Google Scholar 

  55. Schweinfurt H, Länge R, Günzel P (1996) Environmental fate and ecological effects of steroidal estrogens. Presentation at the 3rd Eurolab Symposium—Testing and Analysis for Industrial Competitiveness and Sustainability, Berlin, Germany, June 5 to 7, 1996

  56. Sternebring B, Liden A, Andersson K, Melander A (1992) Carbamazepine kinetics and adverse effects during and after ethanol exposure in alcoholics and healthy volunteers. Eur J Clin Pharmacol 43:393–397

    PubMed  Google Scholar 

  57. Strayer DL (1999) Effects of alien species on freshwater mollusks in North America. J N Am Benthol Soc 18:74–98

    Google Scholar 

  58. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Article  Google Scholar 

  59. Ternes TA (2001) Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. Trends Anal Chem 20:419–434

    Article  Google Scholar 

  60. Ternes TA, Bonerz M., Schmidt T (2001) Determination of neutral pharmaceuticals in wastewater and rivers by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 938:175–185

    Article  PubMed  Google Scholar 

  61. Timmermans KR, (1991) Trace metal ecotoxicokinetics of chironomids. Doctoral thesis, University Amsterdam

  62. Tixier C, Singer HP, Oellers S, Muller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Tech 37:1061–1068

    Article  Google Scholar 

  63. United States Environmental Protection Agency (2000) Computer program: EPI-Suite Version 3.11. Available at: http://www. epa.gov/opptintr/exposure/docs/episuite.htm. Accessed: March 2005

  64. West CW, Ankley GT (1998) A laboratory assay to assess avoidance of contaminated sediments by the freshwater oligochaete Lumbriculus varigatus. Arch Environ Contam Toxicol 35:20–24

    Article  PubMed  Google Scholar 

  65. Wiegel S, Aulinger A, Brockmeyer R, Harms H, Löffler J, Reincke H, et al. (2004) Pharmaceuticals in the river Elbe and its tributaries. Chemosphere 57:107–126

    Article  PubMed  Google Scholar 

  66. Young WF, Whitehouse P, Johnson I, Sorokin N (2002) Proposed predicted-no-effect-concentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters. Research and Development, Technical Report P2-T04/1. Environment Agency, Bristol, UK

    Google Scholar 

Download references

Acknowledgments

We thank G. Elter, Y. Gerasymchyk, and M. Hasenbank for excellent technical assistance and V. Hecker for support during the experiments. This research was funded through the Centre of Environmental Research (ZUF), University Frankfurt am Main.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Oetken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oetken, M., Nentwig, G., Löffler, D. et al. Effects of Pharmaceuticals on Aquatic Invertebrates. Part I. The Antiepileptic Drug Carbamazepine. Arch Environ Contam Toxicol 49, 353–361 (2005). https://doi.org/10.1007/s00244-004-0211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-004-0211-0

Keywords

Navigation