Skip to main content
Log in

Population Structure and Dynamics of Gammarus fossarum (Amphipoda) Upstream and Downstream from Effluents of Sewage Treatment Plants

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Two streams in Germany (Körsch and Lockwitzbach), each with two sampling sites above and below a sewage treatment plant (STP) discharging effluent, were investigated. Sampling sites were characterized, and exposure monitoring for chemicals with known or assumed endocrine disrupting potential was carried out. Both the population structure and the population dynamics of Gammarus fossarum were examined. The physicochemical parameters measured at the sampling sites of the Lockwitzbach and Körsch streams were found not to reach levels having an acute toxic impact on the development of gammarids. The calculated estrogenic potential in the stream water was 22- to 35-fold higher at the downstream site of the Körsch compared with the other sampling sites, mainly because of the concentrations of 17α-ethinylestradiol on two sampling dates. At both streams, an influence of the respective STP effluent on the sex ratio of G. fossarum was not observed. Moreover, intersexuality was not induced by these effluents. Differences in the structure and dynamics of G. fossarum populations were more pronounced at the Körsch than at the Lockwitzbach. At the downstream sampling site at the Körsch, gammarids reached their highest abundances. Particularly at the downstream sampling site of the Körsch, the proportion of breeding female gammarids and the proportion of juvenile gammarids in the smallest body length class were decreased compared with upstream. Adult gammarids were larger from the Lockwitzbach downstream site, but they were smaller from the Körsch downstream site compared with the respective upstream site. At the Körsch, the earlier onset of the autumnal reproductive resting period could be caused by the influence of the STP effluent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Notes

  1. All samples where the number of examined animals differ from the total number, see Table 2.

References

  • Adam S, Pawert M, Lehmann R, Roth B, Müller E, Triebskorn R (2001) Physiochemical and morphological characterization of two small polluted streams in south west Germany. J Aquat Ecosyst Stress Recov 8:179–194

    CAS  Google Scholar 

  • Ankley G, Mihaich E, Stahl R, Tillitt D, Colbom T, McMaster S, et al. (1998) Overview of a workshop on screening methods for detecting potential (anti-) estrogenic/androgenic chemicals in wildlife. Environ Toxicol Chem 17:68–87

    CAS  Google Scholar 

  • Baldwin WS, Milam DL, LeBlanc GA (1995) Physiological and biochemical perturbations in Daphnia magna following exposure to the model environmental estrogen diethylstilbestrol. Environ Toxicol Chem 14:945–952

    CAS  Google Scholar 

  • Bettin C, Oehlmann J, Stroben E (1996) TBT-induced imposex in marine neogastropods is mediated by an increasing androgen level. Helgol Meereswiss Unters 50:299–317

    Google Scholar 

  • Bick H (1959) Gammarus pulex fossarum KOCH 1835 als Fallaubzersetzer. Z Fischerei 8:635–638

    Google Scholar 

  • Birkhead TR, Clarkson K (1980) Mate selection and precopulatory guarding in Gammarus pulex. Z Tierpsychol 52:365–380

    Google Scholar 

  • Bollache L, Gambade G, Cézilly F (2001) The effects of two acanthocephalan parasites, Pomphorhynchus laevis and Polymorphus minutus, on pairing success in male Gammarus pulex (Crustacea: Amphipoda). Behav Ecol Sociobiol 49:296–303

    Google Scholar 

  • Bright DA, Ellis DV (1990) A comparative survey of imposex in the Northeast Pacific gastropods (Prosobranchia) related to tributyltin contamination and choice of a suitable indicator. Can J Zool 68:1915–1924

    Google Scholar 

  • Brown AF, Pascoe D (1989) Parasitism and host sensitivity to cadmium: An acanthocephalan infection of the freshwater amphipod Gammarus pulex. J Appl Ecol 26:473–487

    CAS  Google Scholar 

  • Buikema AL, Chester AL, Steeves HR (1980) Intersexuality in Gammarus minus Say. Crustaceana 6(suppl):111–117

    Google Scholar 

  • Cézilly F, Gregoire A, Bertin A (2000) Conflict between co-occurring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Ganwwrus pulex. Parasitology 120:625–630

    Google Scholar 

  • Colborn T, vom Saal FS, Soto AM (1993) Developmental effects of endocrine disrupting chemicals on wildlife and humans. Environ Health Perspect 101:378–384

    CAS  Google Scholar 

  • Colborn T, Thayer K (2000) Aquatic ecosystems: Harbingers of endocrine disruption. Ecol Appl 10:949–957

    Google Scholar 

  • Crain DA, Guillette LJ, Pickford DB, Percival HF, Woodward AR (1998) Sex-steroid and thyroid hormone concentrations in juvenile alligators (Alligator mississippiensis) from contaminated and reference lakes in Florida, U.S.A. Environ Toxicol Chem 17:446–452

    Article  CAS  Google Scholar 

  • Crompton DWT, Harrison JG (1965) Observations on Polymorphus minutus (Goeze, 1782) (Acanthocephala) from a wildfowl reserve in Kent. Parasitology 55:345–355

    CAS  Google Scholar 

  • Dick JTA, Elwood RW (1989) Assessments and decisions during mate choice in Gammarus pulex (Amphipoda). Behaviour 109:235–246

    Google Scholar 

  • Dinan L, Bourne P, Whiting P, Dhadialla TS, Hutchinson TH (2001) Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the Drosophila melanogaster BII cell in vitro assay. Environ Toxicol Chem 20:2038–2046

    Article  CAS  Google Scholar 

  • Dunn AM, Adams J, Smith JE (1994) Intersexuality in the crustacean Gammarus duebeni. Invertebr Reprod Dev 25:139–142

    Google Scholar 

  • Elmgren R (1973) Methods of sampling sublittoral soft bottom meiofauna. Oikos 15(suppl):112–120

    Google Scholar 

  • Franke U (1977) Experimentelle Untersuchungen zur Respiration von Gammarus fossarum KOCH 1835 (Crustacea-Amphipoda) in Abhängigkeit von Temperatur, Sauerstofflconzentration und Wasserbewegung. Arch Hydrobiol 48(suppl):369–411

    Google Scholar 

  • Franken RJM, Waluto B, Peeters ETHM, Gardeniers JJP, Bejer JAJ, Scheffer M (2005) Growth of shredders on leaf litter biofilms: The effect of light intensity. Freshw Biol 50:459–466

    Article  Google Scholar 

  • Geyer HJ, Rimkus GG, Scheunert I, Kaune A, Schratnm K-W, Kettrup A, et al. (1999) Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans. In: Beek B (ed) The handbook of environmental chemistry. Volume 2, Part J: Bioaccumulation. Springer, Berlin, Germany, pp 38–59

    Google Scholar 

  • Goedmakers A (1972) Gammarus fossarum KOCH, 1835: Redescription based on neotype material and notes on its local variation (Crustacea, Amphipoda). Bijdr Dierkunde 42:124–138

    Google Scholar 

  • Gross MY, Maycock DS, Thomdyke MC, Morritt D, Crane M (2001) Abnormalities in sexual development of the amphipod Gammarus pulex (L.) found below sewage treatment works. Environ Toxicol Chem 20:1792–1797

    Article  CAS  Google Scholar 

  • Guillette LJ, Guillette EA (1996) Environmental contaminants and reproductive abnormalities in wildlife: Implications for public health? Toxicol Indust Health 12:537–550

    Google Scholar 

  • Haeckel J-W, Meijering MPD, Rusetzki H (1973) Gammarus fossarum KOCH als Fallaubzersetzer in Waldbächen. Freshw Biol 3:241–249

    Google Scholar 

  • Heinisch E, Kettrup A, Wenzel-Klein S (1993) Retrospektive Daten—Prospektive Aussagen, DDT/Lindan-Masseneinsatze in der DDR, Ökochemish-ökotoxikologische Folgen. UWSF 5:277–280

    Google Scholar 

  • Heinze K (1932) Fortpflanzung und Brutpflege bei Gammarus pulex L. und Carinogammarus roeselii Gerv. Zool Jb Allg Zool 51:397–440

    Google Scholar 

  • Hutchinson TH, Pounds NA, Hampel M, Williams TD (1999) Impact of natural and synthetic steroids on the survival, development and reproduction of marine copepods (Tisbe battagliai). Sci Total Environ 233:167–179

    Article  CAS  Google Scholar 

  • Hutchinson TH (2002) Reproductive and developmental effects of endocrine dismpters in invertebrates: In vitro and in vivo approaches, Toxicol Lett 131:75–81

    Article  CAS  Google Scholar 

  • Hynes HBN (1955) The reproductive cycle of some British freshwater Gammaridae. J Anim Ecol 24:352–387

    Google Scholar 

  • Jensen P (1982) A new meiofauna sample splitter. Ann Zool Fenn 19:233–236

    Google Scholar 

  • Jobling S, Sumpter JP (1993) Detergent components in sewage effluent are weakly oestrogenic to fish: An in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 27:361–372

    Article  CAS  Google Scholar 

  • Jungmann D, Ladewig V, Ludwichowski K-U, Petzsch P, Nagel R (2004) Intersexuality in Gammarus fossarum KOCH—A common inducible phenomenon? Arch Hydrobiol 159:511–529

    Article  Google Scholar 

  • Körner W, Hanf V, Schuller W, Zwirner M, Hagenmaier H (1997) Entwicklung und praktische Erprobung eines einfachen Screening-Systems für estrogenartig wirkende Umweltchemikalien. Final project report Umwelt und Gesundheit PUG, Baden-Württemberg, Germany (PUG U95004)

  • Körner W, Spengler P, Bolz U, Schuller W, Hanf V, Metzger JW (2001) Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. Environ Toxicol Chem 20:2142–2151

    Article  Google Scholar 

  • Körner W (2000) Nachweis von estrogen und androgenartig wirksamen Substanzen in der Umwelt durch Kombination von chemischer und biologischer Analytik. Habilitation thesis, Eberhard-Karls-University Tübingen, Germany

  • Kopf W (1997) Wirkungen endokriner Stoffe in Biotests mit Wasserorganismen. Münchner Beitr Abwasser, Fischerei Flußbiol 50:82–101

    CAS  Google Scholar 

  • Ladewig V, Jungmann D, Koehler A, Schiring M, Triebskom R, Nagel R (2002) Intersexuality in Gammarus fossarum Koch, 1835 (Amphipoda). Crustaceana 75:1289–1299

    Article  Google Scholar 

  • Ladewig V (2004) Der Einfluss von hormonell wirksamen Umweltchemikalien auf die Populationsökologie von Gammarus fossarum. PhD thesis, Dresden University of Technology, Dresden, Germany

  • Lehmann U (1967) Drift und Populationsdynamik von Gammarus pulex fossarum KOCH. Z Morph Ökol Tiere 60:227–274

    Article  Google Scholar 

  • Le Roux M-L (1933) Recherches sur la sexualité des gammariens. Bull Biol 16(suppl):1–139

    Google Scholar 

  • Ludwichowski K-U, Nagel R (2004) GC/MS Analysen des Wassers der Bäche. In: Jungmann D, Köhler, A, Köhler H-R, Ladewig V, Licht O, Ludwichowski K-U, et al. (eds) Umweltchemikalien mit Wirkung auf das Hormonsystem–TV 5: Wirkung von Xenohormionen in aquatischen Ökosystemen. Part I: Freilanduntersuchungen. German Federal Environmental Agency (UBA) Report, Berlin, Germany, pp 65–79

    Google Scholar 

  • Matthiessen P (2000): Is endocrine disruption a significant ecological issue? Ecotoxicology 9:21–24

    Article  CAS  Google Scholar 

  • Meijering MPD, Pieper HG (1982) Die Indikatorbedeutung der Gattung Gammarus in Fließgewässern. Decheniana-Beihefte 26:111–113

    Google Scholar 

  • Metag N (2000) Erfassung der Populationsdynamik von Gammarus fossarum im Lockwitzbach. Diploma thesis, Dresden University of Technology, Dresden, Germany

  • Moore CG, Stevenson JM (1991) The occurrence of intersexuality in harpacticoid copepods and its relationship with pollution. Mar Poll Bull 22:72–74

    Google Scholar 

  • Moore CG, Stevenson JM (1994) Intersexuality in benthic harpacticoid copepods in the Firth of Forth, Scotland. J Nat Hist 28:1213–1230

    Google Scholar 

  • Obrdlìk P (1972) A population of Rivulogammarus fossarum KOCH (Amphipoda) in a small fishless stream. Hydrobiologia 40:279–295

    Google Scholar 

  • Oehlmann J, Fioroni p, Stroben E, Markert B (1996) Tributhyltin (TBT) effects on Ocinebrina aciculata (Gastropoda: Muricidae): Imposex development, sterilization, sex change and population decline. Sci Total Environ 188:205–223

    CAS  Google Scholar 

  • Oehlmann J, Bauer B, Minchin D, Schulte-Oehlmann U, Fioroni P, Markert B (1998) Imposex in Nucella lapillus and intersex in Littorina littorea: Interspecific comparison of two TBT-induced effects and their geographical uniformity. Hydrobiologia 378:199–213

    Article  Google Scholar 

  • Oehlmann J, Schulte-Oehlnmnn U (2003) Endocrine disruption in invertebrates. Pure Appl Chem 75:2207–2218

    CAS  Google Scholar 

  • Parks LG, LeBlanc GA (1996) Reductions in steroid hormone biotransfomiation/elimination as abiomarker of pentachlorophenol chronic toxicity. Aquat Toxicol 34:291–303

    Article  CAS  Google Scholar 

  • Pfankuche O, Thiel H (1988) Sample processing, In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian, Washington DC, pp 134–145

    Google Scholar 

  • Pöckl M (1990) Dauer der Brutentwicklung, Schlüpferfolg, Wachstum und Fekundität von vier Populationen von G. fossarum Koch, 1835 und von zwei Populationen von G. roeseli Gervais, 1835 (Crustacea: Amphipoda) aus österreichischen Fließgewässern. PhD thesis, University of Vienna, Vienna Austria

  • Pöckl M, Humpesch H (1990) Infra- and inter-specific variations in egg survival and brood development time for Australian populations of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda). Freshw Biol 23:441–455

    Google Scholar 

  • Pöckl M (1993) Beiträge zur Ökologie des Bachflohkrebses (Gammarus fossarum) und Flußflohkrebses (Gammarus roeseli). Natur Mus 123:114–125

    Google Scholar 

  • Pöckl M (2002) Krebstiere: Flohkrebse (Crustacea: Amphipoda: Corophiidae und Gammaridae). In: Essl F, Rabitsch W (eds) Neobiota in Österreich. Umweltbundesamt Wien, pp 273–284

    Google Scholar 

  • Schellenberg A (1942) Krebstiere oder Crustacea. IV: Flohkrebse oder Amphipoda 40. In: Dahl F (ed) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. Gustav Fischer, Jena, pp 24–32

    Google Scholar 

  • Schirling M, Jungmann D, Ladewig V, Nagel R, Triebskor R, Köhler H-R (2005): Endocrine effects in Gammarus fossarum (Amphipoda)?: Importance of wastewater effluents, temporal variability, and spatial aspects on natural populations. Arch Environ Contam Toxicol 49(1):53–61

    Article  CAS  Google Scholar 

  • Schmidt J (2003) Wirkung von Umweltchemikalien auf Gammarus fossarum—Populationsexperimente und individuenbasiertes Reproduktionsmodell. PhD thesis, Dresden University of Technology, Dresden, Germany

  • Shore LS, Gurevitz M, Shemesh M (1993) Estrogen as an environmental pollutant. Bull Environ Contain Toxicol 51:361–366

    Article  CAS  Google Scholar 

  • Sillett KB, Stemberger RS (1998) Masculinized females in a population of Leptodiaptomus minutus (Copepoda, Calanoida). Can J Zool 76:596–600

    Article  Google Scholar 

  • Stumpf M, Temes TA, Haberer K, Baumann W (1996) Nachweis von natürlichen und synthetischen Östrogenen in Kläranlagen und Fließgewässem. Vom Wasser 87:251–261

    CAS  Google Scholar 

  • Sutcliffe DW (1992) Reproduction in Gammarus (Crustacea, Amphipoda): Basic processes. Freshw Forum 2:102–128

    Google Scholar 

  • Sutcliffe DW (1993) Reproduction in Gammarus (Crustacea, Amphipoda): Female strategies. Freshw Forum 3:26–65

    Google Scholar 

  • Teichmann W (1982) Lebensabläufe und Zeitpläne von Gammariden unter ökologischen Bedingungen, Arch Hydrobiol 64(suppl):240–306

    Google Scholar 

  • Vandenbergh GF, Adriaens D, Verslycke T, Janssen CR (2003) Effects of 17α-ethinylostradiol on sexual development of the amphipod Hyalella azteca. Ecotoxicol Environ Saf 54:216–222

    Article  CAS  Google Scholar 

  • Vos JG, Dybind E, Greim HA, Ladefoged O, Lambre C, Tarazona JV, Brandt I, et al. (2000) Health effects of endocrine-disrupting chemicals on wildlife, with special reference to the European situation. Critical Rev Toxicol 30:71–133

    CAS  Google Scholar 

  • Ward PI (1986) A comparative field study of the breeding behaviour of a stream and a pond population of Gammarus pulex (amphipoda). Oikos 46:29–36

    Google Scholar 

  • Watts MM, Pascoe D, Carroll K (2002) Population responses of the freshwater amphipod Gammarus pulex (L.) to an environmental estrogen, 17α-ethinylostradiol. Environ Toxicol Chem 21:445–450

    Article  CAS  Google Scholar 

  • Wautier J, Roux A (1959) Note sur les Gammares du groupe pulex: dans la region Lyonnaise. Bull Soc Linn Lyon 28:76–83

    Google Scholar 

  • Welton JS, Clarke RT (1980) Laboratory studies on the reproduction and growth of the amphipod, Gammarus pulex (L.). J Anim Ecol 49:581–592

    Google Scholar 

  • Zöfel P (2001) Statistik verstehen, Bin Begleitbuch zur computergestützten Anwendung. Addison-Wesley, München, Germany

    Google Scholar 

  • Zohar S, Holmes JC (1998) Pairing success of male Gammarus lacustris infected by two acanthocephalans: A comparative study. Behav Ecol 9:206–211

    Google Scholar 

  • Zou E, Fingerman M (1997a) Effects of estrogenic xenobiotics on molting of the water flea, Daphnia magna. Ecotoxicol Environ Saf 38:281–285

    Article  CAS  Google Scholar 

  • Zou E, Fingerman M (1997b) Synthetic estrogenic agents do not interfere with sex differentiation but do inhibit molting of the cladoceran Daphnia magna. Bull Environ Contain Toxicol 58:596–602

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Nicole Metag for providing raw data of gammarid populations and physicochemical water analysis from April to June 2000 at the Lockwitzbach stream. Thanks are also due to Thomas Brethfeld. Kathrin Jaeschke, Heike Kampe, Anna Köhler, Kerstin Kriegel, Thomas G. Preuss, Natalie Rüb, and Astrid Woitschella for technical assistance. Further thanks go to Bernd Sures for the species identification of acanthocephalans. This project was funded by the Federal Environmental Agency (Umweltbundesamt) Berlin, Germany (FKZ 299 65 221/05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ladewig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladewig, V., Jungmann, D., Köhler, HR. et al. Population Structure and Dynamics of Gammarus fossarum (Amphipoda) Upstream and Downstream from Effluents of Sewage Treatment Plants. Arch Environ Contam Toxicol 50, 370–383 (2006). https://doi.org/10.1007/s00244-005-7039-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-005-7039-0

Keywords

Navigation